Metamath Proof Explorer


Theorem hashnzfz2

Description: Special case of hashnzfz : the count of multiples in nℤ,n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Hypotheses hashnzfz2.n φ N 2
hashnzfz2.k φ K
Assertion hashnzfz2 φ N 2 K = K N

Proof

Step Hyp Ref Expression
1 hashnzfz2.n φ N 2
2 hashnzfz2.k φ K
3 2nn 2
4 uznnssnn 2 2
5 3 4 ax-mp 2
6 5 1 sselid φ N
7 2z 2
8 7 a1i φ 2
9 nnuz = 1
10 2m1e1 2 1 = 1
11 10 fveq2i 2 1 = 1
12 9 11 eqtr4i = 2 1
13 2 12 eleqtrdi φ K 2 1
14 6 8 13 hashnzfz φ N 2 K = K N 2 1 N
15 10 oveq1i 2 1 N = 1 N
16 15 fveq2i 2 1 N = 1 N
17 0red φ 0
18 6 nnrecred φ 1 N
19 6 nnred φ N
20 6 nngt0d φ 0 < N
21 19 20 recgt0d φ 0 < 1 N
22 17 18 21 ltled φ 0 1 N
23 eluzle N 2 2 N
24 1 23 syl φ 2 N
25 6 nnzd φ N
26 zlem1lt 2 N 2 N 2 1 < N
27 7 25 26 sylancr φ 2 N 2 1 < N
28 24 27 mpbid φ 2 1 < N
29 10 28 eqbrtrrid φ 1 < N
30 6 nnrpd φ N +
31 30 recgt1d φ 1 < N 1 N < 1
32 29 31 mpbid φ 1 N < 1
33 0p1e1 0 + 1 = 1
34 32 33 breqtrrdi φ 1 N < 0 + 1
35 0z 0
36 flbi 1 N 0 1 N = 0 0 1 N 1 N < 0 + 1
37 18 35 36 sylancl φ 1 N = 0 0 1 N 1 N < 0 + 1
38 22 34 37 mpbir2and φ 1 N = 0
39 16 38 eqtrid φ 2 1 N = 0
40 39 oveq2d φ K N 2 1 N = K N 0
41 2 nnred φ K
42 41 6 nndivred φ K N
43 42 flcld φ K N
44 43 zcnd φ K N
45 44 subid1d φ K N 0 = K N
46 14 40 45 3eqtrd φ N 2 K = K N