Metamath Proof Explorer


Theorem hdmap14lem2N

Description: Prior to part 14 in Baer p. 49, line 25. TODO: fix to include F = Z so it can be used in hdmap14lem10 . (Contributed by NM, 31-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmap14lem1.h H=LHypK
hdmap14lem1.u U=DVecHKW
hdmap14lem1.v V=BaseU
hdmap14lem1.t ·˙=U
hdmap14lem3.o 0˙=0U
hdmap14lem1.r R=ScalarU
hdmap14lem1.b B=BaseR
hdmap14lem1.z Z=0R
hdmap14lem1.c C=LCDualKW
hdmap14lem2.e ˙=C
hdmap14lem1.l L=LSpanC
hdmap14lem2.p P=ScalarC
hdmap14lem2.a A=BaseP
hdmap14lem2.q Q=0P
hdmap14lem1.s S=HDMapKW
hdmap14lem1.k φKHLWH
hdmap14lem3.x φXV0˙
hdmap14lem1.f φFBZ
Assertion hdmap14lem2N φgAQSF·˙X=g˙SX

Proof

Step Hyp Ref Expression
1 hdmap14lem1.h H=LHypK
2 hdmap14lem1.u U=DVecHKW
3 hdmap14lem1.v V=BaseU
4 hdmap14lem1.t ·˙=U
5 hdmap14lem3.o 0˙=0U
6 hdmap14lem1.r R=ScalarU
7 hdmap14lem1.b B=BaseR
8 hdmap14lem1.z Z=0R
9 hdmap14lem1.c C=LCDualKW
10 hdmap14lem2.e ˙=C
11 hdmap14lem1.l L=LSpanC
12 hdmap14lem2.p P=ScalarC
13 hdmap14lem2.a A=BaseP
14 hdmap14lem2.q Q=0P
15 hdmap14lem1.s S=HDMapKW
16 hdmap14lem1.k φKHLWH
17 hdmap14lem3.x φXV0˙
18 hdmap14lem1.f φFBZ
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hdmap14lem1 φLSX=LSF·˙X
20 19 eqcomd φLSF·˙X=LSX
21 eqid BaseC=BaseC
22 1 9 16 lcdlvec φCLVec
23 1 2 16 dvhlmod φULMod
24 18 eldifad φFB
25 17 eldifad φXV
26 3 6 4 7 lmodvscl ULModFBXVF·˙XV
27 23 24 25 26 syl3anc φF·˙XV
28 1 2 3 9 21 15 16 27 hdmapcl φSF·˙XBaseC
29 1 2 3 9 21 15 16 25 hdmapcl φSXBaseC
30 21 12 13 14 10 11 22 28 29 lspsneq φLSF·˙X=LSXgAQSF·˙X=g˙SX
31 20 30 mpbid φgAQSF·˙X=g˙SX