Metamath Proof Explorer


Theorem hdmapadd

Description: Part 11 in Baer p. 48 line 35, (a+b)S = aS+bS in their notation (S = sigma). (Contributed by NM, 22-May-2015)

Ref Expression
Hypotheses hdmap11.h H=LHypK
hdmap11.u U=DVecHKW
hdmap11.v V=BaseU
hdmap11.p +˙=+U
hdmap11.c C=LCDualKW
hdmap11.a ˙=+C
hdmap11.s S=HDMapKW
hdmap11.k φKHLWH
hdmap11.x φXV
hdmap11.y φYV
Assertion hdmapadd φSX+˙Y=SX˙SY

Proof

Step Hyp Ref Expression
1 hdmap11.h H=LHypK
2 hdmap11.u U=DVecHKW
3 hdmap11.v V=BaseU
4 hdmap11.p +˙=+U
5 hdmap11.c C=LCDualKW
6 hdmap11.a ˙=+C
7 hdmap11.s S=HDMapKW
8 hdmap11.k φKHLWH
9 hdmap11.x φXV
10 hdmap11.y φYV
11 eqid IBaseKILTrnKW=IBaseKILTrnKW
12 eqid 0U=0U
13 eqid LSpanU=LSpanU
14 eqid BaseC=BaseC
15 eqid LSpanC=LSpanC
16 eqid mapdKW=mapdKW
17 eqid HVMapKW=HVMapKW
18 eqid HDMap1KW=HDMap1KW
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hdmap11lem2 φSX+˙Y=SX˙SY