Metamath Proof Explorer


Theorem hdmapip0com

Description: Commutation property of Baer's sigma map (Holland's A map). Line 20 of Holland95 p. 14. Also part of Lemma 1 of Baer p. 110 line 7. (Contributed by NM, 9-Jun-2015)

Ref Expression
Hypotheses hdmapip0com.h H = LHyp K
hdmapip0com.u U = DVecH K W
hdmapip0com.v V = Base U
hdmapip0com.r R = Scalar U
hdmapip0com.z 0 ˙ = 0 R
hdmapip0com.s S = HDMap K W
hdmapip0com.k φ K HL W H
hdmapip0com.x φ X V
hdmapip0com.y φ Y V
Assertion hdmapip0com φ S X Y = 0 ˙ S Y X = 0 ˙

Proof

Step Hyp Ref Expression
1 hdmapip0com.h H = LHyp K
2 hdmapip0com.u U = DVecH K W
3 hdmapip0com.v V = Base U
4 hdmapip0com.r R = Scalar U
5 hdmapip0com.z 0 ˙ = 0 R
6 hdmapip0com.s S = HDMap K W
7 hdmapip0com.k φ K HL W H
8 hdmapip0com.x φ X V
9 hdmapip0com.y φ Y V
10 eqid ocH K W = ocH K W
11 1 10 2 3 7 9 8 dochsncom φ Y ocH K W X X ocH K W Y
12 1 10 2 3 4 5 6 7 8 9 hdmapellkr φ S X Y = 0 ˙ Y ocH K W X
13 1 10 2 3 4 5 6 7 9 8 hdmapellkr φ S Y X = 0 ˙ X ocH K W Y
14 11 12 13 3bitr4d φ S X Y = 0 ˙ S Y X = 0 ˙