Metamath Proof Explorer


Theorem hdmapln1

Description: Linearity property that will be used for inner product. TODO: try to combine hypotheses in hdmap*ln* series. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses hdmapln1.h H=LHypK
hdmapln1.u U=DVecHKW
hdmapln1.v V=BaseU
hdmapln1.p +˙=+U
hdmapln1.t ·˙=U
hdmapln1.r R=ScalarU
hdmapln1.b B=BaseR
hdmapln1.q ˙=+R
hdmapln1.m ×˙=R
hdmapln1.s S=HDMapKW
hdmapln1.k φKHLWH
hdmapln1.x φXV
hdmapln1.y φYV
hdmapln1.z φZV
hdmapln1.a φAB
Assertion hdmapln1 φSZA·˙X+˙Y=A×˙SZX˙SZY

Proof

Step Hyp Ref Expression
1 hdmapln1.h H=LHypK
2 hdmapln1.u U=DVecHKW
3 hdmapln1.v V=BaseU
4 hdmapln1.p +˙=+U
5 hdmapln1.t ·˙=U
6 hdmapln1.r R=ScalarU
7 hdmapln1.b B=BaseR
8 hdmapln1.q ˙=+R
9 hdmapln1.m ×˙=R
10 hdmapln1.s S=HDMapKW
11 hdmapln1.k φKHLWH
12 hdmapln1.x φXV
13 hdmapln1.y φYV
14 hdmapln1.z φZV
15 hdmapln1.a φAB
16 1 2 11 dvhlmod φULMod
17 eqid LCDualKW=LCDualKW
18 eqid BaseLCDualKW=BaseLCDualKW
19 eqid LFnlU=LFnlU
20 1 2 3 17 18 10 11 14 hdmapcl φSZBaseLCDualKW
21 1 17 18 2 19 11 20 lcdvbaselfl φSZLFnlU
22 3 4 6 5 7 8 9 19 lfli ULModSZLFnlUABXVYVSZA·˙X+˙Y=A×˙SZX˙SZY
23 16 21 15 12 13 22 syl113anc φSZA·˙X+˙Y=A×˙SZX˙SZY