Metamath Proof Explorer


Theorem hdmaplna1

Description: Additive property of first (inner product) argument. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmaplna1.h H=LHypK
hdmaplna1.u U=DVecHKW
hdmaplna1.v V=BaseU
hdmaplna1.p +˙=+U
hdmaplna1.r R=ScalarU
hdmaplna1.q ˙=+R
hdmaplna1.s S=HDMapKW
hdmaplna1.k φKHLWH
hdmaplna1.x φXV
hdmaplna1.y φYV
hdmaplna1.z φZV
Assertion hdmaplna1 φSZX+˙Y=SZX˙SZY

Proof

Step Hyp Ref Expression
1 hdmaplna1.h H=LHypK
2 hdmaplna1.u U=DVecHKW
3 hdmaplna1.v V=BaseU
4 hdmaplna1.p +˙=+U
5 hdmaplna1.r R=ScalarU
6 hdmaplna1.q ˙=+R
7 hdmaplna1.s S=HDMapKW
8 hdmaplna1.k φKHLWH
9 hdmaplna1.x φXV
10 hdmaplna1.y φYV
11 hdmaplna1.z φZV
12 1 2 8 dvhlmod φULMod
13 eqid LCDualKW=LCDualKW
14 eqid BaseLCDualKW=BaseLCDualKW
15 eqid LFnlU=LFnlU
16 1 2 3 13 14 7 8 11 hdmapcl φSZBaseLCDualKW
17 1 13 14 2 15 8 16 lcdvbaselfl φSZLFnlU
18 5 6 3 4 15 lfladd ULModSZLFnlUXVYVSZX+˙Y=SZX˙SZY
19 12 17 9 10 18 syl112anc φSZX+˙Y=SZX˙SZY