Metamath Proof Explorer


Theorem hgmaprnlem3N

Description: Lemma for hgmaprnN . Eliminate k . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h H = LHyp K
hgmaprnlem1.u U = DVecH K W
hgmaprnlem1.v V = Base U
hgmaprnlem1.r R = Scalar U
hgmaprnlem1.b B = Base R
hgmaprnlem1.t · ˙ = U
hgmaprnlem1.o 0 ˙ = 0 U
hgmaprnlem1.c C = LCDual K W
hgmaprnlem1.d D = Base C
hgmaprnlem1.p P = Scalar C
hgmaprnlem1.a A = Base P
hgmaprnlem1.e ˙ = C
hgmaprnlem1.q Q = 0 C
hgmaprnlem1.s S = HDMap K W
hgmaprnlem1.g G = HGMap K W
hgmaprnlem1.k φ K HL W H
hgmaprnlem1.z φ z A
hgmaprnlem1.t2 φ t V 0 ˙
hgmaprnlem1.s2 φ s V
hgmaprnlem1.sz φ S s = z ˙ S t
hgmaprnlem1.m M = mapd K W
hgmaprnlem1.n N = LSpan U
hgmaprnlem1.l L = LSpan C
Assertion hgmaprnlem3N φ z ran G

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h H = LHyp K
2 hgmaprnlem1.u U = DVecH K W
3 hgmaprnlem1.v V = Base U
4 hgmaprnlem1.r R = Scalar U
5 hgmaprnlem1.b B = Base R
6 hgmaprnlem1.t · ˙ = U
7 hgmaprnlem1.o 0 ˙ = 0 U
8 hgmaprnlem1.c C = LCDual K W
9 hgmaprnlem1.d D = Base C
10 hgmaprnlem1.p P = Scalar C
11 hgmaprnlem1.a A = Base P
12 hgmaprnlem1.e ˙ = C
13 hgmaprnlem1.q Q = 0 C
14 hgmaprnlem1.s S = HDMap K W
15 hgmaprnlem1.g G = HGMap K W
16 hgmaprnlem1.k φ K HL W H
17 hgmaprnlem1.z φ z A
18 hgmaprnlem1.t2 φ t V 0 ˙
19 hgmaprnlem1.s2 φ s V
20 hgmaprnlem1.sz φ S s = z ˙ S t
21 hgmaprnlem1.m M = mapd K W
22 hgmaprnlem1.n N = LSpan U
23 hgmaprnlem1.l L = LSpan C
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 hgmaprnlem2N φ N s N t
25 1 2 16 dvhlmod φ U LMod
26 18 eldifad φ t V
27 3 4 5 6 22 25 19 26 lspsnss2 φ N s N t k B s = k · ˙ t
28 24 27 mpbid φ k B s = k · ˙ t
29 16 3ad2ant1 φ k B s = k · ˙ t K HL W H
30 17 3ad2ant1 φ k B s = k · ˙ t z A
31 18 3ad2ant1 φ k B s = k · ˙ t t V 0 ˙
32 19 3ad2ant1 φ k B s = k · ˙ t s V
33 20 3ad2ant1 φ k B s = k · ˙ t S s = z ˙ S t
34 simp2 φ k B s = k · ˙ t k B
35 simp3 φ k B s = k · ˙ t s = k · ˙ t
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 35 hgmaprnlem1N φ k B s = k · ˙ t z ran G
37 36 rexlimdv3a φ k B s = k · ˙ t z ran G
38 28 37 mpd φ z ran G