Metamath Proof Explorer


Theorem hgt749d

Description: A deduction version of ax-hgt749 . (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses hgt749d.o O=z|¬2z
hgt749d.n φNO
hgt749d.1 φ1027N
Assertion hgt749d φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx

Proof

Step Hyp Ref Expression
1 hgt749d.o O=z|¬2z
2 hgt749d.n φNO
3 hgt749d.1 φ1027N
4 breq2 n=N1027n1027N
5 oveq1 n=Nn2=N2
6 5 oveq2d n=N0 .00042248n2=0 .00042248N2
7 oveq2 n=NΛ×fhvtsn=Λ×fhvtsN
8 7 fveq1d n=NΛ×fhvtsnx=Λ×fhvtsNx
9 oveq2 n=NΛ×fkvtsn=Λ×fkvtsN
10 9 fveq1d n=NΛ×fkvtsnx=Λ×fkvtsNx
11 10 oveq1d n=NΛ×fkvtsnx2=Λ×fkvtsNx2
12 8 11 oveq12d n=NΛ×fhvtsnxΛ×fkvtsnx2=Λ×fhvtsNxΛ×fkvtsNx2
13 negeq n=Nn=N
14 13 oveq1d n=Nnx=- Nx
15 14 oveq2d n=Ni2πnx=i2π- Nx
16 15 fveq2d n=Nei2πnx=ei2π- Nx
17 12 16 oveq12d n=NΛ×fhvtsnxΛ×fkvtsnx2ei2πnx=Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nx
18 17 adantr n=Nx01Λ×fhvtsnxΛ×fkvtsnx2ei2πnx=Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nx
19 18 itgeq2dv n=N01Λ×fhvtsnxΛ×fkvtsnx2ei2πnxdx=01Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx
20 6 19 breq12d n=N0 .00042248n201Λ×fhvtsnxΛ×fkvtsnx2ei2πnxdx0 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx
21 20 3anbi3d n=Nmkm1 .079955mhm1 .4140 .00042248n201Λ×fhvtsnxΛ×fkvtsnx2ei2πnxdxmkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx
22 21 rexbidv n=Nk0+∞mkm1 .079955mhm1 .4140 .00042248n201Λ×fhvtsnxΛ×fkvtsnx2ei2πnxdxk0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx
23 22 rexbidv n=Nh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248n201Λ×fhvtsnxΛ×fkvtsnx2ei2πnxdxh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx
24 4 23 imbi12d n=N1027nh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248n201Λ×fhvtsnxΛ×fkvtsnx2ei2πnxdx1027Nh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx
25 ax-hgt749 nz|¬2z1027nh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248n201Λ×fhvtsnxΛ×fkvtsnx2ei2πnxdx
26 25 a1i φnz|¬2z1027nh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248n201Λ×fhvtsnxΛ×fkvtsnx2ei2πnxdx
27 2 1 eleqtrdi φNz|¬2z
28 24 26 27 rspcdva φ1027Nh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx
29 3 28 mpd φh0+∞k0+∞mkm1 .079955mhm1 .4140 .00042248N201Λ×fhvtsNxΛ×fkvtsNx2ei2π- Nxdx