Metamath Proof Explorer


Theorem hlatexch4

Description: Exchange 2 atoms. (Contributed by NM, 13-May-2013)

Ref Expression
Hypotheses hlatexch4.j ˙=joinK
hlatexch4.a A=AtomsK
Assertion hlatexch4 KHLPAQARASAPRQSP˙Q=R˙SP˙R=Q˙S

Proof

Step Hyp Ref Expression
1 hlatexch4.j ˙=joinK
2 hlatexch4.a A=AtomsK
3 simp11 KHLPAQARASAPRQSP˙Q=R˙SKHL
4 simp2l KHLPAQARASAPRQSP˙Q=R˙SRA
5 simp2r KHLPAQARASAPRQSP˙Q=R˙SSA
6 eqid K=K
7 6 1 2 hlatlej2 KHLRASASKR˙S
8 3 4 5 7 syl3anc KHLPAQARASAPRQSP˙Q=R˙SSKR˙S
9 simp33 KHLPAQARASAPRQSP˙Q=R˙SP˙Q=R˙S
10 8 9 breqtrrd KHLPAQARASAPRQSP˙Q=R˙SSKP˙Q
11 simp12 KHLPAQARASAPRQSP˙Q=R˙SPA
12 simp13 KHLPAQARASAPRQSP˙Q=R˙SQA
13 simp32 KHLPAQARASAPRQSP˙Q=R˙SQS
14 13 necomd KHLPAQARASAPRQSP˙Q=R˙SSQ
15 6 1 2 hlatexch2 KHLSAPAQASQSKP˙QPKS˙Q
16 3 5 11 12 14 15 syl131anc KHLPAQARASAPRQSP˙Q=R˙SSKP˙QPKS˙Q
17 10 16 mpd KHLPAQARASAPRQSP˙Q=R˙SPKS˙Q
18 1 2 hlatjcom KHLSAQAS˙Q=Q˙S
19 3 5 12 18 syl3anc KHLPAQARASAPRQSP˙Q=R˙SS˙Q=Q˙S
20 17 19 breqtrd KHLPAQARASAPRQSP˙Q=R˙SPKQ˙S
21 6 1 2 hlatlej2 KHLPAQAQKP˙Q
22 3 11 12 21 syl3anc KHLPAQARASAPRQSP˙Q=R˙SQKP˙Q
23 22 9 breqtrd KHLPAQARASAPRQSP˙Q=R˙SQKR˙S
24 6 1 2 hlatexch2 KHLQARASAQSQKR˙SRKQ˙S
25 3 12 4 5 13 24 syl131anc KHLPAQARASAPRQSP˙Q=R˙SQKR˙SRKQ˙S
26 23 25 mpd KHLPAQARASAPRQSP˙Q=R˙SRKQ˙S
27 3 hllatd KHLPAQARASAPRQSP˙Q=R˙SKLat
28 eqid BaseK=BaseK
29 28 2 atbase PAPBaseK
30 11 29 syl KHLPAQARASAPRQSP˙Q=R˙SPBaseK
31 28 2 atbase RARBaseK
32 4 31 syl KHLPAQARASAPRQSP˙Q=R˙SRBaseK
33 28 1 2 hlatjcl KHLQASAQ˙SBaseK
34 3 12 5 33 syl3anc KHLPAQARASAPRQSP˙Q=R˙SQ˙SBaseK
35 28 6 1 latjle12 KLatPBaseKRBaseKQ˙SBaseKPKQ˙SRKQ˙SP˙RKQ˙S
36 27 30 32 34 35 syl13anc KHLPAQARASAPRQSP˙Q=R˙SPKQ˙SRKQ˙SP˙RKQ˙S
37 20 26 36 mpbi2and KHLPAQARASAPRQSP˙Q=R˙SP˙RKQ˙S
38 simp31 KHLPAQARASAPRQSP˙Q=R˙SPR
39 6 1 2 ps-1 KHLPARAPRQASAP˙RKQ˙SP˙R=Q˙S
40 3 11 4 38 12 5 39 syl132anc KHLPAQARASAPRQSP˙Q=R˙SP˙RKQ˙SP˙R=Q˙S
41 37 40 mpbid KHLPAQARASAPRQSP˙Q=R˙SP˙R=Q˙S