Metamath Proof Explorer


Theorem hlhilbase

Description: The base set of the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilbase.h H=LHypK
hlhilbase.u U=HLHilKW
hlhilbase.k φKHLWH
hlhilbase.l L=DVecHKW
hlhilbase.m M=BaseL
Assertion hlhilbase φM=BaseU

Proof

Step Hyp Ref Expression
1 hlhilbase.h H=LHypK
2 hlhilbase.u U=HLHilKW
3 hlhilbase.k φKHLWH
4 hlhilbase.l L=DVecHKW
5 hlhilbase.m M=BaseL
6 5 fvexi MV
7 eqid BasendxM+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxM,yMHDMapKWyx=BasendxM+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxM,yMHDMapKWyx
8 7 phlbase MVM=BaseBasendxM+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxM,yMHDMapKWyx
9 6 8 ax-mp M=BaseBasendxM+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxM,yMHDMapKWyx
10 eqid +L=+L
11 eqid EDRingKW=EDRingKW
12 eqid HGMapKW=HGMapKW
13 eqid EDRingKWsSet*ndxHGMapKW=EDRingKWsSet*ndxHGMapKW
14 eqid L=L
15 eqid HDMapKW=HDMapKW
16 eqid xM,yMHDMapKWyx=xM,yMHDMapKWyx
17 1 2 4 5 10 11 12 13 14 15 16 3 hlhilset φU=BasendxM+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxM,yMHDMapKWyx
18 17 fveq2d φBaseU=BaseBasendxM+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndxxM,yMHDMapKWyx
19 9 18 eqtr4id φM=BaseU