Metamath Proof Explorer


Theorem hlhilipval

Description: Value of inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilip.h H=LHypK
hlhilip.l L=DVecHKW
hlhilip.v V=BaseL
hlhilip.s S=HDMapKW
hlhilip.u U=HLHilKW
hlhilip.k φKHLWH
hlhilip.i ,˙=𝑖U
hlhilip.x φXV
hlhilip.y φYV
Assertion hlhilipval φX,˙Y=SYX

Proof

Step Hyp Ref Expression
1 hlhilip.h H=LHypK
2 hlhilip.l L=DVecHKW
3 hlhilip.v V=BaseL
4 hlhilip.s S=HDMapKW
5 hlhilip.u U=HLHilKW
6 hlhilip.k φKHLWH
7 hlhilip.i ,˙=𝑖U
8 hlhilip.x φXV
9 hlhilip.y φYV
10 eqid xV,yVSyx=xV,yVSyx
11 1 2 3 4 5 6 10 hlhilip φxV,yVSyx=𝑖U
12 7 11 eqtr4id φ,˙=xV,yVSyx
13 12 oveqd φX,˙Y=XxV,yVSyxY
14 fveq2 x=XSyx=SyX
15 fveq2 y=YSy=SY
16 15 fveq1d y=YSyX=SYX
17 fvex SYXV
18 14 16 10 17 ovmpo XVYVXxV,yVSyxY=SYX
19 8 9 18 syl2anc φXxV,yVSyxY=SYX
20 13 19 eqtrd φX,˙Y=SYX