Metamath Proof Explorer


Theorem hlhilsca

Description: The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilbase.h H = LHyp K
hlhilbase.u U = HLHil K W
hlhilbase.k φ K HL W H
hlhilsca.e E = EDRing K W
hlhilsca.g G = HGMap K W
hlhilsca.r R = E sSet * ndx G
Assertion hlhilsca φ R = Scalar U

Proof

Step Hyp Ref Expression
1 hlhilbase.h H = LHyp K
2 hlhilbase.u U = HLHil K W
3 hlhilbase.k φ K HL W H
4 hlhilsca.e E = EDRing K W
5 hlhilsca.g G = HGMap K W
6 hlhilsca.r R = E sSet * ndx G
7 ovex E sSet * ndx G V
8 6 7 eqeltri R V
9 eqid Base ndx Base DVecH K W + ndx + DVecH K W Scalar ndx R ndx DVecH K W 𝑖 ndx x Base DVecH K W , y Base DVecH K W HDMap K W y x = Base ndx Base DVecH K W + ndx + DVecH K W Scalar ndx R ndx DVecH K W 𝑖 ndx x Base DVecH K W , y Base DVecH K W HDMap K W y x
10 9 phlsca R V R = Scalar Base ndx Base DVecH K W + ndx + DVecH K W Scalar ndx R ndx DVecH K W 𝑖 ndx x Base DVecH K W , y Base DVecH K W HDMap K W y x
11 8 10 ax-mp R = Scalar Base ndx Base DVecH K W + ndx + DVecH K W Scalar ndx R ndx DVecH K W 𝑖 ndx x Base DVecH K W , y Base DVecH K W HDMap K W y x
12 eqid DVecH K W = DVecH K W
13 eqid Base DVecH K W = Base DVecH K W
14 eqid + DVecH K W = + DVecH K W
15 eqid DVecH K W = DVecH K W
16 eqid HDMap K W = HDMap K W
17 eqid x Base DVecH K W , y Base DVecH K W HDMap K W y x = x Base DVecH K W , y Base DVecH K W HDMap K W y x
18 1 2 12 13 14 4 5 6 15 16 17 3 hlhilset φ U = Base ndx Base DVecH K W + ndx + DVecH K W Scalar ndx R ndx DVecH K W 𝑖 ndx x Base DVecH K W , y Base DVecH K W HDMap K W y x
19 18 fveq2d φ Scalar U = Scalar Base ndx Base DVecH K W + ndx + DVecH K W Scalar ndx R ndx DVecH K W 𝑖 ndx x Base DVecH K W , y Base DVecH K W HDMap K W y x
20 11 19 eqtr4id φ R = Scalar U