Metamath Proof Explorer


Theorem hlhilsca

Description: The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilbase.h H=LHypK
hlhilbase.u U=HLHilKW
hlhilbase.k φKHLWH
hlhilsca.e E=EDRingKW
hlhilsca.g G=HGMapKW
hlhilsca.r R=EsSet*ndxG
Assertion hlhilsca φR=ScalarU

Proof

Step Hyp Ref Expression
1 hlhilbase.h H=LHypK
2 hlhilbase.u U=HLHilKW
3 hlhilbase.k φKHLWH
4 hlhilsca.e E=EDRingKW
5 hlhilsca.g G=HGMapKW
6 hlhilsca.r R=EsSet*ndxG
7 ovex EsSet*ndxGV
8 6 7 eqeltri RV
9 eqid BasendxBaseDVecHKW+ndx+DVecHKWScalarndxRndxDVecHKW𝑖ndxxBaseDVecHKW,yBaseDVecHKWHDMapKWyx=BasendxBaseDVecHKW+ndx+DVecHKWScalarndxRndxDVecHKW𝑖ndxxBaseDVecHKW,yBaseDVecHKWHDMapKWyx
10 9 phlsca RVR=ScalarBasendxBaseDVecHKW+ndx+DVecHKWScalarndxRndxDVecHKW𝑖ndxxBaseDVecHKW,yBaseDVecHKWHDMapKWyx
11 8 10 ax-mp R=ScalarBasendxBaseDVecHKW+ndx+DVecHKWScalarndxRndxDVecHKW𝑖ndxxBaseDVecHKW,yBaseDVecHKWHDMapKWyx
12 eqid DVecHKW=DVecHKW
13 eqid BaseDVecHKW=BaseDVecHKW
14 eqid +DVecHKW=+DVecHKW
15 eqid DVecHKW=DVecHKW
16 eqid HDMapKW=HDMapKW
17 eqid xBaseDVecHKW,yBaseDVecHKWHDMapKWyx=xBaseDVecHKW,yBaseDVecHKWHDMapKWyx
18 1 2 12 13 14 4 5 6 15 16 17 3 hlhilset φU=BasendxBaseDVecHKW+ndx+DVecHKWScalarndxRndxDVecHKW𝑖ndxxBaseDVecHKW,yBaseDVecHKWHDMapKWyx
19 18 fveq2d φScalarU=ScalarBasendxBaseDVecHKW+ndx+DVecHKWScalarndxRndxDVecHKW𝑖ndxxBaseDVecHKW,yBaseDVecHKWHDMapKWyx
20 11 19 eqtr4id φR=ScalarU