Metamath Proof Explorer


Theorem hlhilvsca

Description: The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilvsca.h H=LHypK
hlhilvsca.l L=DVecHKW
hlhilvsca.t ·˙=L
hlhilvsca.u U=HLHilKW
hlhilvsca.k φKHLWH
Assertion hlhilvsca φ·˙=U

Proof

Step Hyp Ref Expression
1 hlhilvsca.h H=LHypK
2 hlhilvsca.l L=DVecHKW
3 hlhilvsca.t ·˙=L
4 hlhilvsca.u U=HLHilKW
5 hlhilvsca.k φKHLWH
6 3 fvexi ·˙V
7 eqid BasendxBaseL+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndx·˙𝑖ndxxBaseL,yBaseLHDMapKWyx=BasendxBaseL+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndx·˙𝑖ndxxBaseL,yBaseLHDMapKWyx
8 7 phlvsca ·˙V·˙=BasendxBaseL+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndx·˙𝑖ndxxBaseL,yBaseLHDMapKWyx
9 6 8 ax-mp ·˙=BasendxBaseL+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndx·˙𝑖ndxxBaseL,yBaseLHDMapKWyx
10 eqid BaseL=BaseL
11 eqid +L=+L
12 eqid EDRingKW=EDRingKW
13 eqid HGMapKW=HGMapKW
14 eqid EDRingKWsSet*ndxHGMapKW=EDRingKWsSet*ndxHGMapKW
15 eqid HDMapKW=HDMapKW
16 eqid xBaseL,yBaseLHDMapKWyx=xBaseL,yBaseLHDMapKWyx
17 1 4 2 10 11 12 13 14 3 15 16 5 hlhilset φU=BasendxBaseL+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndx·˙𝑖ndxxBaseL,yBaseLHDMapKWyx
18 17 fveq2d φU=BasendxBaseL+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndx·˙𝑖ndxxBaseL,yBaseLHDMapKWyx
19 9 18 eqtr4id φ·˙=U