Metamath Proof Explorer


Theorem hlprlem

Description: Lemma for hlpr . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses hlress.f F=ScalarW
hlress.k K=BaseF
Assertion hlprlem WℂHilKSubRingfldfld𝑠KDivRingfld𝑠KCMetSp

Proof

Step Hyp Ref Expression
1 hlress.f F=ScalarW
2 hlress.k K=BaseF
3 hlcph WℂHilWCPreHil
4 1 2 cphsubrg WCPreHilKSubRingfld
5 3 4 syl WℂHilKSubRingfld
6 1 2 cphsca WCPreHilF=fld𝑠K
7 3 6 syl WℂHilF=fld𝑠K
8 cphlvec WCPreHilWLVec
9 1 lvecdrng WLVecFDivRing
10 3 8 9 3syl WℂHilFDivRing
11 7 10 eqeltrrd WℂHilfld𝑠KDivRing
12 hlbn WℂHilWBan
13 1 bnsca WBanFCMetSp
14 12 13 syl WℂHilFCMetSp
15 7 14 eqeltrrd WℂHilfld𝑠KCMetSp
16 5 11 15 3jca WℂHilKSubRingfldfld𝑠KDivRingfld𝑠KCMetSp