Metamath Proof Explorer


Theorem hmeoopn

Description: Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis hmeoopn.1 X=J
Assertion hmeoopn FJHomeoKAXAJFAK

Proof

Step Hyp Ref Expression
1 hmeoopn.1 X=J
2 hmeoima FJHomeoKAJFAK
3 2 ex FJHomeoKAJFAK
4 3 adantr FJHomeoKAXAJFAK
5 hmeocn FJHomeoKFJCnK
6 cnima FJCnKFAKF-1FAJ
7 6 ex FJCnKFAKF-1FAJ
8 5 7 syl FJHomeoKFAKF-1FAJ
9 8 adantr FJHomeoKAXFAKF-1FAJ
10 eqid K=K
11 1 10 hmeof1o FJHomeoKF:X1-1 ontoK
12 f1of1 F:X1-1 ontoKF:X1-1K
13 11 12 syl FJHomeoKF:X1-1K
14 f1imacnv F:X1-1KAXF-1FA=A
15 13 14 sylan FJHomeoKAXF-1FA=A
16 15 eleq1d FJHomeoKAXF-1FAJAJ
17 9 16 sylibd FJHomeoKAXFAKAJ
18 4 17 impbid FJHomeoKAXAJFAK