Metamath Proof Explorer


Theorem hmphdis

Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Hypothesis hmphdis.1 X=J
Assertion hmphdis J𝒫AJ=𝒫X

Proof

Step Hyp Ref Expression
1 hmphdis.1 X=J
2 pwuni J𝒫J
3 1 pweqi 𝒫X=𝒫J
4 2 3 sseqtrri J𝒫X
5 4 a1i J𝒫AJ𝒫X
6 hmph J𝒫AJHomeo𝒫A
7 n0 JHomeo𝒫AffJHomeo𝒫A
8 elpwi x𝒫XxX
9 imassrn fxranf
10 unipw 𝒫A=A
11 10 eqcomi A=𝒫A
12 1 11 hmeof1o fJHomeo𝒫Af:X1-1 ontoA
13 f1of f:X1-1 ontoAf:XA
14 frn f:XAranfA
15 12 13 14 3syl fJHomeo𝒫AranfA
16 15 adantr fJHomeo𝒫AxXranfA
17 9 16 sstrid fJHomeo𝒫AxXfxA
18 vex fV
19 18 imaex fxV
20 19 elpw fx𝒫AfxA
21 17 20 sylibr fJHomeo𝒫AxXfx𝒫A
22 1 hmeoopn fJHomeo𝒫AxXxJfx𝒫A
23 21 22 mpbird fJHomeo𝒫AxXxJ
24 23 ex fJHomeo𝒫AxXxJ
25 8 24 syl5 fJHomeo𝒫Ax𝒫XxJ
26 25 ssrdv fJHomeo𝒫A𝒫XJ
27 26 exlimiv ffJHomeo𝒫A𝒫XJ
28 7 27 sylbi JHomeo𝒫A𝒫XJ
29 6 28 sylbi J𝒫A𝒫XJ
30 5 29 eqssd J𝒫AJ=𝒫X