Metamath Proof Explorer


Theorem hoissre

Description: The projection of a half-open interval onto a single dimension is a subset of RR . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis hoissre.1 φI:X2
Assertion hoissre φkX.Ik

Proof

Step Hyp Ref Expression
1 hoissre.1 φI:X2
2 1 adantr φkXI:X2
3 simpr φkXkX
4 2 3 fvovco φkX.Ik=1stIk2ndIk
5 1 ffvelcdmda φkXIk2
6 xp1st Ik21stIk
7 5 6 syl φkX1stIk
8 xp2nd Ik22ndIk
9 5 8 syl φkX2ndIk
10 9 rexrd φkX2ndIk*
11 icossre 1stIk2ndIk*1stIk2ndIk
12 7 10 11 syl2anc φkX1stIk2ndIk
13 4 12 eqsstrd φkX.Ik