Metamath Proof Explorer


Theorem homafval

Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homarcl.h H=HomaC
homafval.b B=BaseC
homafval.c φCCat
homafval.j J=HomC
Assertion homafval φH=xB×Bx×Jx

Proof

Step Hyp Ref Expression
1 homarcl.h H=HomaC
2 homafval.b B=BaseC
3 homafval.c φCCat
4 homafval.j J=HomC
5 fveq2 c=CBasec=BaseC
6 5 2 eqtr4di c=CBasec=B
7 6 sqxpeqd c=CBasec×Basec=B×B
8 fveq2 c=CHomc=HomC
9 8 4 eqtr4di c=CHomc=J
10 9 fveq1d c=CHomcx=Jx
11 10 xpeq2d c=Cx×Homcx=x×Jx
12 7 11 mpteq12dv c=CxBasec×Basecx×Homcx=xB×Bx×Jx
13 df-homa Homa=cCatxBasec×Basecx×Homcx
14 2 fvexi BV
15 14 14 xpex B×BV
16 15 mptex xB×Bx×JxV
17 12 13 16 fvmpt CCatHomaC=xB×Bx×Jx
18 3 17 syl φHomaC=xB×Bx×Jx
19 1 18 eqtrid φH=xB×Bx×Jx