Metamath Proof Explorer


Theorem homco1

Description: Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion homco1 AT:U:A·opTU=A·opTU

Proof

Step Hyp Ref Expression
1 fvco3 U:xA·opTUx=A·opTUx
2 1 3ad2antl3 AT:U:xA·opTUx=A·opTUx
3 fvco3 U:xTUx=TUx
4 3 3ad2antl3 AT:U:xTUx=TUx
5 4 oveq2d AT:U:xATUx=ATUx
6 ffvelcdm U:xUx
7 homval AT:UxA·opTUx=ATUx
8 6 7 syl3an3 AT:U:xA·opTUx=ATUx
9 8 3expa AT:U:xA·opTUx=ATUx
10 9 exp43 AT:U:xA·opTUx=ATUx
11 10 3imp1 AT:U:xA·opTUx=ATUx
12 5 11 eqtr4d AT:U:xATUx=A·opTUx
13 2 12 eqtr4d AT:U:xA·opTUx=ATUx
14 fco T:U:TU:
15 homval ATU:xA·opTUx=ATUx
16 14 15 syl3an2 AT:U:xA·opTUx=ATUx
17 16 3expia AT:U:xA·opTUx=ATUx
18 17 3impb AT:U:xA·opTUx=ATUx
19 18 imp AT:U:xA·opTUx=ATUx
20 13 19 eqtr4d AT:U:xA·opTUx=A·opTUx
21 20 ralrimiva AT:U:xA·opTUx=A·opTUx
22 homulcl AT:A·opT:
23 fco A·opT:U:A·opTU:
24 22 23 stoic3 AT:U:A·opTU:
25 homulcl ATU:A·opTU:
26 14 25 sylan2 AT:U:A·opTU:
27 26 3impb AT:U:A·opTU:
28 hoeq A·opTU:A·opTU:xA·opTUx=A·opTUxA·opTU=A·opTU
29 24 27 28 syl2anc AT:U:xA·opTUx=A·opTUxA·opTU=A·opTU
30 21 29 mpbid AT:U:A·opTU=A·opTU