Metamath Proof Explorer


Theorem hstles

Description: Ordering property of a Hilbert-space-valued state. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstles SCHStatesACBCABnormSA=1normSB=1

Proof

Step Hyp Ref Expression
1 simpr SCHStatesACBCABnormSA=1normSA=1
2 hstle SCHStatesACBCABnormSAnormSB
3 2 adantr SCHStatesACBCABnormSA=1normSAnormSB
4 1 3 eqbrtrrd SCHStatesACBCABnormSA=11normSB
5 4 ex SCHStatesACBCABnormSA=11normSB
6 hstle1 SCHStatesBCnormSB1
7 6 ad2ant2r SCHStatesACBCABnormSB1
8 5 7 jctild SCHStatesACBCABnormSA=1normSB11normSB
9 hstcl SCHStatesBCSB
10 normcl SBnormSB
11 1re 1
12 letri3 normSB1normSB=1normSB11normSB
13 11 12 mpan2 normSBnormSB=1normSB11normSB
14 9 10 13 3syl SCHStatesBCnormSB=1normSB11normSB
15 14 ad2ant2r SCHStatesACBCABnormSB=1normSB11normSB
16 8 15 sylibrd SCHStatesACBCABnormSA=1normSB=1