Metamath Proof Explorer


Theorem hvmaplfl

Description: The vector to functional map value is a functional. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses hvmaplfl.h H = LHyp K
hvmaplfl.u U = DVecH K W
hvmaplfl.v V = Base U
hvmaplfl.z 0 ˙ = 0 U
hvmaplfl.f F = LFnl U
hvmaplfl.m M = HVMap K W
hvmaplfl.k φ K HL W H
hvmaplfl.x φ X V 0 ˙
Assertion hvmaplfl φ M X F

Proof

Step Hyp Ref Expression
1 hvmaplfl.h H = LHyp K
2 hvmaplfl.u U = DVecH K W
3 hvmaplfl.v V = Base U
4 hvmaplfl.z 0 ˙ = 0 U
5 hvmaplfl.f F = LFnl U
6 hvmaplfl.m M = HVMap K W
7 hvmaplfl.k φ K HL W H
8 hvmaplfl.x φ X V 0 ˙
9 eqid LCDual K W = LCDual K W
10 eqid Base LCDual K W = Base LCDual K W
11 eqid 0 LCDual K W = 0 LCDual K W
12 1 2 3 4 9 10 11 6 7 8 hvmapcl2 φ M X Base LCDual K W 0 LCDual K W
13 12 eldifad φ M X Base LCDual K W
14 1 9 10 2 5 7 13 lcdvbaselfl φ M X F