Metamath Proof Explorer


Theorem icoshft

Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008)

Ref Expression
Assertion icoshft ABCXABX+CA+CB+C

Proof

Step Hyp Ref Expression
1 rexr BB*
2 elico2 AB*XABXAXX<B
3 1 2 sylan2 ABXABXAXX<B
4 3 biimpd ABXABXAXX<B
5 4 3adant3 ABCXABXAXX<B
6 3anass XAXX<BXAXX<B
7 5 6 imbitrdi ABCXABXAXX<B
8 leadd1 AXCAXA+CX+C
9 8 3com12 XACAXA+CX+C
10 9 3expib XACAXA+CX+C
11 10 com12 ACXAXA+CX+C
12 11 3adant2 ABCXAXA+CX+C
13 12 imp ABCXAXA+CX+C
14 ltadd1 XBCX<BX+C<B+C
15 14 3expib XBCX<BX+C<B+C
16 15 com12 BCXX<BX+C<B+C
17 16 3adant1 ABCXX<BX+C<B+C
18 17 imp ABCXX<BX+C<B+C
19 13 18 anbi12d ABCXAXX<BA+CX+CX+C<B+C
20 19 pm5.32da ABCXAXX<BXA+CX+CX+C<B+C
21 readdcl XCX+C
22 21 expcom CXX+C
23 22 anim1d CXA+CX+CX+C<B+CX+CA+CX+CX+C<B+C
24 3anass X+CA+CX+CX+C<B+CX+CA+CX+CX+C<B+C
25 23 24 imbitrrdi CXA+CX+CX+C<B+CX+CA+CX+CX+C<B+C
26 25 3ad2ant3 ABCXA+CX+CX+C<B+CX+CA+CX+CX+C<B+C
27 readdcl ACA+C
28 27 3adant2 ABCA+C
29 readdcl BCB+C
30 29 3adant1 ABCB+C
31 rexr B+CB+C*
32 elico2 A+CB+C*X+CA+CB+CX+CA+CX+CX+C<B+C
33 31 32 sylan2 A+CB+CX+CA+CB+CX+CA+CX+CX+C<B+C
34 33 biimprd A+CB+CX+CA+CX+CX+C<B+CX+CA+CB+C
35 28 30 34 syl2anc ABCX+CA+CX+CX+C<B+CX+CA+CB+C
36 26 35 syld ABCXA+CX+CX+C<B+CX+CA+CB+C
37 20 36 sylbid ABCXAXX<BX+CA+CB+C
38 7 37 syld ABCXABX+CA+CB+C