Metamath Proof Explorer


Theorem idfusubc0

Description: The identity functor for a subcategory is an "inclusion functor" from the subcategory into its supercategory. (Contributed by AV, 29-Mar-2020)

Ref Expression
Hypotheses idfusubc.s S=CcatJ
idfusubc.i I=idfuncS
idfusubc.b B=BaseS
Assertion idfusubc0 JSubcatCI=IBxB,yBIxHomSy

Proof

Step Hyp Ref Expression
1 idfusubc.s S=CcatJ
2 idfusubc.i I=idfuncS
3 idfusubc.b B=BaseS
4 id JSubcatCJSubcatC
5 1 4 subccat JSubcatCSCat
6 eqid HomS=HomS
7 2 3 5 6 idfuval JSubcatCI=IBzB×BIHomSz
8 fveq2 z=xyHomSz=HomSxy
9 df-ov xHomSy=HomSxy
10 8 9 eqtr4di z=xyHomSz=xHomSy
11 10 reseq2d z=xyIHomSz=IxHomSy
12 11 mpompt zB×BIHomSz=xB,yBIxHomSy
13 12 a1i JSubcatCzB×BIHomSz=xB,yBIxHomSy
14 13 opeq2d JSubcatCIBzB×BIHomSz=IBxB,yBIxHomSy
15 7 14 eqtrd JSubcatCI=IBxB,yBIxHomSy