| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idltrn.b |  | 
						
							| 2 |  | idltrn.h |  | 
						
							| 3 |  | idltrn.t |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 1 2 4 | idldil |  | 
						
							| 6 |  | simpll |  | 
						
							| 7 |  | simplrr |  | 
						
							| 8 |  | simprr |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 9 10 11 12 2 | lhpmat |  | 
						
							| 14 | 6 7 8 13 | syl12anc |  | 
						
							| 15 | 1 12 | atbase |  | 
						
							| 16 |  | fvresi |  | 
						
							| 17 | 7 15 16 | 3syl |  | 
						
							| 18 | 17 | oveq2d |  | 
						
							| 19 |  | simplll |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 20 12 | hlatjidm |  | 
						
							| 22 | 19 7 21 | syl2anc |  | 
						
							| 23 | 18 22 | eqtrd |  | 
						
							| 24 | 23 | oveq1d |  | 
						
							| 25 |  | simplrl |  | 
						
							| 26 | 1 12 | atbase |  | 
						
							| 27 |  | fvresi |  | 
						
							| 28 | 25 26 27 | 3syl |  | 
						
							| 29 | 28 | oveq2d |  | 
						
							| 30 | 20 12 | hlatjidm |  | 
						
							| 31 | 19 25 30 | syl2anc |  | 
						
							| 32 | 29 31 | eqtrd |  | 
						
							| 33 | 32 | oveq1d |  | 
						
							| 34 |  | simprl |  | 
						
							| 35 | 9 10 11 12 2 | lhpmat |  | 
						
							| 36 | 6 25 34 35 | syl12anc |  | 
						
							| 37 | 33 36 | eqtrd |  | 
						
							| 38 | 14 24 37 | 3eqtr4rd |  | 
						
							| 39 | 38 | ex |  | 
						
							| 40 | 39 | ralrimivva |  | 
						
							| 41 | 9 20 10 12 2 4 3 | isltrn |  | 
						
							| 42 | 5 40 41 | mpbir2and |  |