Metamath Proof Explorer


Theorem idomrcan

Description: Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses domncan.b B=BaseR
domncan.1 0˙=0R
domncan.m ·˙=R
domncan.x φXB0˙
domncan.y φYB
domncan.z φZB
domnrcan.r φRIDomn
domnrcan.2 φY·˙X=Z·˙X
Assertion idomrcan φY=Z

Proof

Step Hyp Ref Expression
1 domncan.b B=BaseR
2 domncan.1 0˙=0R
3 domncan.m ·˙=R
4 domncan.x φXB0˙
5 domncan.y φYB
6 domncan.z φZB
7 domnrcan.r φRIDomn
8 domnrcan.2 φY·˙X=Z·˙X
9 7 idomdomd φRDomn
10 df-idom IDomn=CRingDomn
11 7 10 eleqtrdi φRCRingDomn
12 11 elin1d φRCRing
13 4 eldifad φXB
14 1 3 crngcom RCRingXBYBX·˙Y=Y·˙X
15 12 13 5 14 syl3anc φX·˙Y=Y·˙X
16 1 3 crngcom RCRingXBZBX·˙Z=Z·˙X
17 12 13 6 16 syl3anc φX·˙Z=Z·˙X
18 8 15 17 3eqtr4d φX·˙Y=X·˙Z
19 1 2 3 4 5 6 9 18 domnlcan φY=Z