Metamath Proof Explorer


Theorem ifle

Description: An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014)

Ref Expression
Assertion ifle ABBAφψifφABifψAB

Proof

Step Hyp Ref Expression
1 simpll1 ABBAφψφA
2 1 leidd ABBAφψφAA
3 iftrue φifφAB=A
4 3 adantl ABBAφψφifφAB=A
5 id φψφψ
6 5 imp φψφψ
7 6 adantll ABBAφψφψ
8 7 iftrued ABBAφψφifψAB=A
9 2 4 8 3brtr4d ABBAφψφifφABifψAB
10 iffalse ¬φifφAB=B
11 10 adantl ABBAφψ¬φifφAB=B
12 simpll3 ABBAφψ¬φBA
13 simpll2 ABBAφψ¬φB
14 13 leidd ABBAφψ¬φBB
15 breq2 A=ifψABBABifψAB
16 breq2 B=ifψABBBBifψAB
17 15 16 ifboth BABBBifψAB
18 12 14 17 syl2anc ABBAφψ¬φBifψAB
19 11 18 eqbrtrd ABBAφψ¬φifφABifψAB
20 9 19 pm2.61dan ABBAφψifφABifψAB