Description: An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ifle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll1 | |
|
2 | 1 | leidd | |
3 | iftrue | |
|
4 | 3 | adantl | |
5 | id | |
|
6 | 5 | imp | |
7 | 6 | adantll | |
8 | 7 | iftrued | |
9 | 2 4 8 | 3brtr4d | |
10 | iffalse | |
|
11 | 10 | adantl | |
12 | simpll3 | |
|
13 | simpll2 | |
|
14 | 13 | leidd | |
15 | breq2 | |
|
16 | breq2 | |
|
17 | 15 16 | ifboth | |
18 | 12 14 17 | syl2anc | |
19 | 11 18 | eqbrtrd | |
20 | 9 19 | pm2.61dan | |