Metamath Proof Explorer


Theorem ig1pnunit

Description: The polynomial ideal generator is not a unit polynomial. (Contributed by Thierry Arnoux, 19-Mar-2025)

Ref Expression
Hypotheses ig1pirred.p P=Poly1R
ig1pirred.g G=idlGen1pR
ig1pirred.u U=BaseP
ig1pirred.r φRDivRing
ig1pirred.1 φILIdealP
ig1pirred.2 φIU
Assertion ig1pnunit φ¬GIUnitP

Proof

Step Hyp Ref Expression
1 ig1pirred.p P=Poly1R
2 ig1pirred.g G=idlGen1pR
3 ig1pirred.u U=BaseP
4 ig1pirred.r φRDivRing
5 ig1pirred.1 φILIdealP
6 ig1pirred.2 φIU
7 eqid UnitP=UnitP
8 simpr φGIUnitPGIUnitP
9 eqid LIdealP=LIdealP
10 1 2 9 ig1pcl RDivRingILIdealPGII
11 4 5 10 syl2anc φGII
12 11 adantr φGIUnitPGII
13 4 drngringd φRRing
14 1 ply1ring RRingPRing
15 13 14 syl φPRing
16 15 adantr φGIUnitPPRing
17 5 adantr φGIUnitPILIdealP
18 3 7 8 12 16 17 lidlunitel φGIUnitPI=U
19 6 adantr φGIUnitPIU
20 19 neneqd φGIUnitP¬I=U
21 18 20 pm2.65da φ¬GIUnitP