Metamath Proof Explorer


Theorem igenmin

Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion igenmin RRingOpsIIdlRSIRIdlGenSI

Proof

Step Hyp Ref Expression
1 eqid 1stR=1stR
2 eqid ran1stR=ran1stR
3 1 2 idlss RRingOpsIIdlRIran1stR
4 sstr SIIran1stRSran1stR
5 4 ancoms Iran1stRSISran1stR
6 1 2 igenval RRingOpsSran1stRRIdlGenS=jIdlR|Sj
7 5 6 sylan2 RRingOpsIran1stRSIRIdlGenS=jIdlR|Sj
8 7 anassrs RRingOpsIran1stRSIRIdlGenS=jIdlR|Sj
9 3 8 syldanl RRingOpsIIdlRSIRIdlGenS=jIdlR|Sj
10 9 3impa RRingOpsIIdlRSIRIdlGenS=jIdlR|Sj
11 sseq2 j=ISjSI
12 11 intminss IIdlRSIjIdlR|SjI
13 12 3adant1 RRingOpsIIdlRSIjIdlR|SjI
14 10 13 eqsstrd RRingOpsIIdlRSIRIdlGenSI