Metamath Proof Explorer


Theorem iinrab2

Description: Indexed intersection of a restricted class abstraction. (Contributed by NM, 6-Dec-2011)

Ref Expression
Assertion iinrab2 xAyB|φB=yB|xAφ

Proof

Step Hyp Ref Expression
1 iineq1 A=xAyB|φ=xyB|φ
2 0iin xyB|φ=V
3 1 2 eqtrdi A=xAyB|φ=V
4 3 ineq1d A=xAyB|φB=VB
5 incom VB=BV
6 inv1 BV=B
7 5 6 eqtri VB=B
8 4 7 eqtrdi A=xAyB|φB=B
9 rzal A=xAyBφ
10 rabid2 B=yB|xAφyBxAφ
11 ralcom yBxAφxAyBφ
12 10 11 bitr2i xAyBφB=yB|xAφ
13 9 12 sylib A=B=yB|xAφ
14 8 13 eqtrd A=xAyB|φB=yB|xAφ
15 iinrab AxAyB|φ=yB|xAφ
16 15 ineq1d AxAyB|φB=yB|xAφB
17 ssrab2 yB|xAφB
18 dfss yB|xAφByB|xAφ=yB|xAφB
19 17 18 mpbi yB|xAφ=yB|xAφB
20 16 19 eqtr4di AxAyB|φB=yB|xAφ
21 14 20 pm2.61ine xAyB|φB=yB|xAφ