Metamath Proof Explorer


Theorem imsdf

Description: Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses imsdfn.1 X=BaseSetU
imsdfn.8 D=IndMetU
Assertion imsdf UNrmCVecD:X×X

Proof

Step Hyp Ref Expression
1 imsdfn.1 X=BaseSetU
2 imsdfn.8 D=IndMetU
3 eqid normCVU=normCVU
4 1 3 nvf UNrmCVecnormCVU:X
5 eqid -vU=-vU
6 1 5 nvmf UNrmCVec-vU:X×XX
7 fco normCVU:X-vU:X×XXnormCVU-vU:X×X
8 4 6 7 syl2anc UNrmCVecnormCVU-vU:X×X
9 5 3 2 imsval UNrmCVecD=normCVU-vU
10 9 feq1d UNrmCVecD:X×XnormCVU-vU:X×X
11 8 10 mpbird UNrmCVecD:X×X