Metamath Proof Explorer


Theorem inclfusubc

Description: The "inclusion functor" from a subcategory of a category into the category itself. (Contributed by AV, 30-Mar-2020)

Ref Expression
Hypotheses inclfusubc.j φJSubcatC
inclfusubc.s S=CcatJ
inclfusubc.b B=BaseS
inclfusubc.f φF=IB
inclfusubc.g φG=xB,yBIxJy
Assertion inclfusubc φFSFuncCG

Proof

Step Hyp Ref Expression
1 inclfusubc.j φJSubcatC
2 inclfusubc.s S=CcatJ
3 inclfusubc.b B=BaseS
4 inclfusubc.f φF=IB
5 inclfusubc.g φG=xB,yBIxJy
6 fthfunc SFaithCSFuncC
7 eqid idfuncS=idfuncS
8 2 7 rescfth JSubcatCidfuncSSFaithC
9 1 8 syl φidfuncSSFaithC
10 6 9 sselid φidfuncSSFuncC
11 df-br FSFuncCGFGSFuncC
12 4 5 opeq12d φFG=IBxB,yBIxJy
13 2 7 3 idfusubc JSubcatCidfuncS=IBxB,yBIxJy
14 1 13 syl φidfuncS=IBxB,yBIxJy
15 12 14 eqtr4d φFG=idfuncS
16 15 eleq1d φFGSFuncCidfuncSSFuncC
17 11 16 bitrid φFSFuncCGidfuncSSFuncC
18 10 17 mpbird φFSFuncCG