Metamath Proof Explorer


Theorem indpreima

Description: A function with range { 0 , 1 } as an indicator of the preimage of { 1 } . (Contributed by Thierry Arnoux, 23-Aug-2017)

Ref Expression
Assertion indpreima OVF:O01F=𝟙OF-11

Proof

Step Hyp Ref Expression
1 ffn F:O01FFnO
2 1 adantl OVF:O01FFnO
3 cnvimass F-11domF
4 fdm F:O01domF=O
5 4 adantl OVF:O01domF=O
6 3 5 sseqtrid OVF:O01F-11O
7 indf OVF-11O𝟙OF-11:O01
8 6 7 syldan OVF:O01𝟙OF-11:O01
9 8 ffnd OVF:O01𝟙OF-11FnO
10 simpr OVF:O01F:O01
11 10 ffvelcdmda OVF:O01xOFx01
12 prcom 01=10
13 11 12 eleqtrdi OVF:O01xOFx10
14 8 ffvelcdmda OVF:O01xO𝟙OF-11x01
15 14 12 eleqtrdi OVF:O01xO𝟙OF-11x10
16 simpll OVF:O01xOOV
17 6 adantr OVF:O01xOF-11O
18 simpr OVF:O01xOxO
19 ind1a OVF-11OxO𝟙OF-11x=1xF-11
20 16 17 18 19 syl3anc OVF:O01xO𝟙OF-11x=1xF-11
21 fniniseg FFnOxF-11xOFx=1
22 2 21 syl OVF:O01xF-11xOFx=1
23 22 baibd OVF:O01xOxF-11Fx=1
24 20 23 bitr2d OVF:O01xOFx=1𝟙OF-11x=1
25 13 15 24 elpreq OVF:O01xOFx=𝟙OF-11x
26 2 9 25 eqfnfvd OVF:O01F=𝟙OF-11