Metamath Proof Explorer


Theorem infmrp1

Description: The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion infmrp1 sup+<=0

Proof

Step Hyp Ref Expression
1 rpltrp x+y+y<x
2 ltso <Or
3 2 a1i x+y+y<x<Or
4 0red x+y+y<x0
5 0red z+0
6 rpre z+z
7 rpge0 z+0z
8 5 6 7 lensymd z+¬z<0
9 8 adantl x+y+y<xz+¬z<0
10 elrp z+z0<z
11 breq2 x=zy<xy<z
12 11 rexbidv x=zy+y<xy+y<z
13 12 rspcv z+x+y+y<xy+y<z
14 10 13 sylbir z0<zx+y+y<xy+y<z
15 14 impcom x+y+y<xz0<zy+y<z
16 3 4 9 15 eqinfd x+y+y<xsup+<=0
17 1 16 ax-mp sup+<=0