Description: The supremum of a nonempty set is greater than or equal to the infimum. The second condition is needed, see supxrltinfxr . (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infxrlesupxr.1 | |
|
infxrlesupxr.2 | |
||
Assertion | infxrlesupxr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrlesupxr.1 | |
|
2 | infxrlesupxr.2 | |
|
3 | n0 | |
|
4 | 3 | biimpi | |
5 | 2 4 | syl | |
6 | 1 | infxrcld | |
7 | 6 | adantr | |
8 | 1 | sselda | |
9 | 1 | supxrcld | |
10 | 9 | adantr | |
11 | 1 | adantr | |
12 | simpr | |
|
13 | infxrlb | |
|
14 | 11 12 13 | syl2anc | |
15 | eqid | |
|
16 | 11 12 15 | supxrubd | |
17 | 7 8 10 14 16 | xrletrd | |
18 | 17 | ex | |
19 | 18 | exlimdv | |
20 | 5 19 | mpd | |