Metamath Proof Explorer


Theorem infxrlesupxr

Description: The supremum of a nonempty set is greater than or equal to the infimum. The second condition is needed, see supxrltinfxr . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses infxrlesupxr.1 φA*
infxrlesupxr.2 φA
Assertion infxrlesupxr φsupA*<supA*<

Proof

Step Hyp Ref Expression
1 infxrlesupxr.1 φA*
2 infxrlesupxr.2 φA
3 n0 AxxA
4 3 biimpi AxxA
5 2 4 syl φxxA
6 1 infxrcld φsupA*<*
7 6 adantr φxAsupA*<*
8 1 sselda φxAx*
9 1 supxrcld φsupA*<*
10 9 adantr φxAsupA*<*
11 1 adantr φxAA*
12 simpr φxAxA
13 infxrlb A*xAsupA*<x
14 11 12 13 syl2anc φxAsupA*<x
15 eqid supA*<=supA*<
16 11 12 15 supxrubd φxAxsupA*<
17 7 8 10 14 16 xrletrd φxAsupA*<supA*<
18 17 ex φxAsupA*<supA*<
19 18 exlimdv φxxAsupA*<supA*<
20 5 19 mpd φsupA*<supA*<