Metamath Proof Explorer


Theorem infxrunb2

Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion infxrunb2 A*xyAy<xsupA*<=−∞

Proof

Step Hyp Ref Expression
1 nfv xA*
2 nfra1 xxyAy<x
3 1 2 nfan xA*xyAy<x
4 nfv yA*
5 nfcv _y
6 nfre1 yyAy<x
7 5 6 nfralw yxyAy<x
8 4 7 nfan yA*xyAy<x
9 simpl A*xyAy<xA*
10 mnfxr −∞*
11 10 a1i A*xyAy<x−∞*
12 ssel2 A*xAx*
13 nltmnf x*¬x<−∞
14 12 13 syl A*xA¬x<−∞
15 14 ralrimiva A*xA¬x<−∞
16 15 adantr A*xyAy<xxA¬x<−∞
17 ralimralim xyAy<xx−∞<xyAy<x
18 17 adantl A*xyAy<xx−∞<xyAy<x
19 3 8 9 11 16 18 infxr A*xyAy<xsupA*<=−∞
20 19 ex A*xyAy<xsupA*<=−∞
21 rexr xx*
22 21 adantl A*supA*<=−∞xx*
23 simpl supA*<=−∞xsupA*<=−∞
24 mnflt x−∞<x
25 24 adantl supA*<=−∞x−∞<x
26 23 25 eqbrtrd supA*<=−∞xsupA*<<x
27 26 adantll A*supA*<=−∞xsupA*<<x
28 xrltso <Or*
29 28 a1i A*supA*<=−∞x<Or*
30 xrinfmss A*z*wA¬w<zw*z<wyAy<w
31 30 ad2antrr A*supA*<=−∞xz*wA¬w<zw*z<wyAy<w
32 29 31 infglb A*supA*<=−∞xx*supA*<<xyAy<x
33 22 27 32 mp2and A*supA*<=−∞xyAy<x
34 33 ralrimiva A*supA*<=−∞xyAy<x
35 34 ex A*supA*<=−∞xyAy<x
36 20 35 impbid A*xyAy<xsupA*<=−∞