Metamath Proof Explorer


Theorem inmbl

Description: An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion inmbl AdomvolBdomvolABdomvol

Proof

Step Hyp Ref Expression
1 difundi AB=AB
2 mblss AdomvolA
3 dfss4 AA=A
4 2 3 sylib AdomvolA=A
5 mblss BdomvolB
6 dfss4 BB=B
7 5 6 sylib BdomvolB=B
8 4 7 ineqan12d AdomvolBdomvolAB=AB
9 1 8 eqtrid AdomvolBdomvolAB=AB
10 cmmbl AdomvolAdomvol
11 cmmbl BdomvolBdomvol
12 unmbl AdomvolBdomvolABdomvol
13 10 11 12 syl2an AdomvolBdomvolABdomvol
14 cmmbl ABdomvolABdomvol
15 13 14 syl AdomvolBdomvolABdomvol
16 9 15 eqeltrrd AdomvolBdomvolABdomvol