Metamath Proof Explorer


Theorem invcoisoid

Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 5-Apr-2020)

Ref Expression
Hypotheses invisoinv.b B=BaseC
invisoinv.i I=IsoC
invisoinv.n N=InvC
invisoinv.c φCCat
invisoinv.x φXB
invisoinv.y φYB
invisoinv.f φFXIY
invcoisoid.1 1˙=IdC
invcoisoid.o No typesetting found for |- .o. = ( <. X , Y >. ( comp ` C ) X ) with typecode |-
Assertion invcoisoid Could not format assertion : No typesetting found for |- ( ph -> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 invisoinv.b B=BaseC
2 invisoinv.i I=IsoC
3 invisoinv.n N=InvC
4 invisoinv.c φCCat
5 invisoinv.x φXB
6 invisoinv.y φYB
7 invisoinv.f φFXIY
8 invcoisoid.1 1˙=IdC
9 invcoisoid.o Could not format .o. = ( <. X , Y >. ( comp ` C ) X ) : No typesetting found for |- .o. = ( <. X , Y >. ( comp ` C ) X ) with typecode |-
10 1 2 3 4 5 6 7 invisoinvr φFXNYXNYF
11 eqid SectC=SectC
12 1 3 4 5 6 11 isinv φFXNYXNYFFXSectCYXNYFXNYFYSectCXF
13 simpl FXSectCYXNYFXNYFYSectCXFFXSectCYXNYF
14 12 13 syl6bi φFXNYXNYFFXSectCYXNYF
15 10 14 mpd φFXSectCYXNYF
16 eqid HomC=HomC
17 eqid compC=compC
18 1 16 2 4 5 6 isohom φXIYXHomCY
19 18 7 sseldd φFXHomCY
20 1 16 2 4 6 5 isohom φYIXYHomCX
21 1 3 4 5 6 2 invf φXNY:XIYYIX
22 21 7 ffvelcdmd φXNYFYIX
23 20 22 sseldd φXNYFYHomCX
24 1 16 17 8 11 4 5 6 19 23 issect2 φFXSectCYXNYFXNYFXYcompCXF=1˙X
25 9 a1i Could not format ( ph -> .o. = ( <. X , Y >. ( comp ` C ) X ) ) : No typesetting found for |- ( ph -> .o. = ( <. X , Y >. ( comp ` C ) X ) ) with typecode |-
26 25 eqcomd Could not format ( ph -> ( <. X , Y >. ( comp ` C ) X ) = .o. ) : No typesetting found for |- ( ph -> ( <. X , Y >. ( comp ` C ) X ) = .o. ) with typecode |-
27 26 oveqd Could not format ( ph -> ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( ( X N Y ) ` F ) .o. F ) ) : No typesetting found for |- ( ph -> ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( ( X N Y ) ` F ) .o. F ) ) with typecode |-
28 27 eqeq1d Could not format ( ph -> ( ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) <-> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) ) : No typesetting found for |- ( ph -> ( ( ( ( X N Y ) ` F ) ( <. X , Y >. ( comp ` C ) X ) F ) = ( .1. ` X ) <-> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) ) with typecode |-
29 24 28 bitrd Could not format ( ph -> ( F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) <-> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) ) : No typesetting found for |- ( ph -> ( F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) <-> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) ) with typecode |-
30 15 29 mpbid Could not format ( ph -> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) : No typesetting found for |- ( ph -> ( ( ( X N Y ) ` F ) .o. F ) = ( .1. ` X ) ) with typecode |-