Metamath Proof Explorer


Theorem invffval

Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B=BaseC
invfval.n N=InvC
invfval.c φCCat
invfval.x φXB
invfval.y φYB
invfval.s S=SectC
Assertion invffval φN=xB,yBxSyySx-1

Proof

Step Hyp Ref Expression
1 invfval.b B=BaseC
2 invfval.n N=InvC
3 invfval.c φCCat
4 invfval.x φXB
5 invfval.y φYB
6 invfval.s S=SectC
7 fveq2 c=CBasec=BaseC
8 7 1 eqtr4di c=CBasec=B
9 fveq2 c=CSectc=SectC
10 9 6 eqtr4di c=CSectc=S
11 10 oveqd c=CxSectcy=xSy
12 10 oveqd c=CySectcx=ySx
13 12 cnveqd c=CySectcx-1=ySx-1
14 11 13 ineq12d c=CxSectcyySectcx-1=xSyySx-1
15 8 8 14 mpoeq123dv c=CxBasec,yBasecxSectcyySectcx-1=xB,yBxSyySx-1
16 df-inv Inv=cCatxBasec,yBasecxSectcyySectcx-1
17 1 fvexi BV
18 17 17 mpoex xB,yBxSyySx-1V
19 15 16 18 fvmpt CCatInvC=xB,yBxSyySx-1
20 3 19 syl φInvC=xB,yBxSyySx-1
21 2 20 eqtrid φN=xB,yBxSyySx-1