Metamath Proof Explorer


Theorem invffval

Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B = Base C
invfval.n N = Inv C
invfval.c φ C Cat
invfval.x φ X B
invfval.y φ Y B
invfval.s S = Sect C
Assertion invffval φ N = x B , y B x S y y S x -1

Proof

Step Hyp Ref Expression
1 invfval.b B = Base C
2 invfval.n N = Inv C
3 invfval.c φ C Cat
4 invfval.x φ X B
5 invfval.y φ Y B
6 invfval.s S = Sect C
7 fveq2 c = C Base c = Base C
8 7 1 syl6eqr c = C Base c = B
9 fveq2 c = C Sect c = Sect C
10 9 6 syl6eqr c = C Sect c = S
11 10 oveqd c = C x Sect c y = x S y
12 10 oveqd c = C y Sect c x = y S x
13 12 cnveqd c = C y Sect c x -1 = y S x -1
14 11 13 ineq12d c = C x Sect c y y Sect c x -1 = x S y y S x -1
15 8 8 14 mpoeq123dv c = C x Base c , y Base c x Sect c y y Sect c x -1 = x B , y B x S y y S x -1
16 df-inv Inv = c Cat x Base c , y Base c x Sect c y y Sect c x -1
17 1 fvexi B V
18 17 17 mpoex x B , y B x S y y S x -1 V
19 15 16 18 fvmpt C Cat Inv C = x B , y B x S y y S x -1
20 3 19 syl φ Inv C = x B , y B x S y y S x -1
21 2 20 syl5eq φ N = x B , y B x S y y S x -1