Metamath Proof Explorer


Theorem iocinif

Description: Relate intersection of two open-below, closed-above intervals with the same upper bound with a conditional construct. (Contributed by Thierry Arnoux, 7-Aug-2017)

Ref Expression
Assertion iocinif A*B*C*ACBC=ifA<BBCAC

Proof

Step Hyp Ref Expression
1 exmid A<B¬A<B
2 xrltle A*B*A<BAB
3 2 imp A*B*A<BAB
4 3 3adantl3 A*B*C*A<BAB
5 iocinioc2 A*B*C*ABACBC=BC
6 4 5 syldan A*B*C*A<BACBC=BC
7 6 ex A*B*C*A<BACBC=BC
8 7 ancld A*B*C*A<BA<BACBC=BC
9 simpl2 A*B*C*¬A<BB*
10 simpl1 A*B*C*¬A<BA*
11 simpr A*B*C*¬A<B¬A<B
12 xrlenlt B*A*BA¬A<B
13 12 biimpar B*A*¬A<BBA
14 9 10 11 13 syl21anc A*B*C*¬A<BBA
15 3ancoma B*A*C*A*B*C*
16 incom BCAC=ACBC
17 iocinioc2 B*A*C*BABCAC=AC
18 16 17 eqtr3id B*A*C*BAACBC=AC
19 15 18 sylanbr A*B*C*BAACBC=AC
20 14 19 syldan A*B*C*¬A<BACBC=AC
21 20 ex A*B*C*¬A<BACBC=AC
22 21 ancld A*B*C*¬A<B¬A<BACBC=AC
23 8 22 orim12d A*B*C*A<B¬A<BA<BACBC=BC¬A<BACBC=AC
24 1 23 mpi A*B*C*A<BACBC=BC¬A<BACBC=AC
25 eqif ACBC=ifA<BBCACA<BACBC=BC¬A<BACBC=AC
26 24 25 sylibr A*B*C*ACBC=ifA<BBCAC