Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phlsrng.f | |
|
phllmhm.h | |
||
phllmhm.v | |
||
ipdir.g | |
||
ipdir.p | |
||
ip2di.1 | |
||
ip2di.2 | |
||
ip2di.3 | |
||
ip2di.4 | |
||
ip2di.5 | |
||
Assertion | ip2di | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | |
|
2 | phllmhm.h | |
|
3 | phllmhm.v | |
|
4 | ipdir.g | |
|
5 | ipdir.p | |
|
6 | ip2di.1 | |
|
7 | ip2di.2 | |
|
8 | ip2di.3 | |
|
9 | ip2di.4 | |
|
10 | ip2di.5 | |
|
11 | phllmod | |
|
12 | 6 11 | syl | |
13 | 3 4 | lmodvacl | |
14 | 12 9 10 13 | syl3anc | |
15 | 1 2 3 4 5 | ipdir | |
16 | 6 7 8 14 15 | syl13anc | |
17 | 1 2 3 4 5 | ipdi | |
18 | 6 7 9 10 17 | syl13anc | |
19 | 1 2 3 4 5 | ipdi | |
20 | 6 8 9 10 19 | syl13anc | |
21 | 1 | phlsrng | |
22 | srngring | |
|
23 | ringcmn | |
|
24 | 6 21 22 23 | 4syl | |
25 | eqid | |
|
26 | 1 2 3 25 | ipcl | |
27 | 6 8 9 26 | syl3anc | |
28 | 1 2 3 25 | ipcl | |
29 | 6 8 10 28 | syl3anc | |
30 | 25 5 | cmncom | |
31 | 24 27 29 30 | syl3anc | |
32 | 20 31 | eqtrd | |
33 | 18 32 | oveq12d | |
34 | 1 2 3 25 | ipcl | |
35 | 6 7 9 34 | syl3anc | |
36 | 1 2 3 25 | ipcl | |
37 | 6 7 10 36 | syl3anc | |
38 | 25 5 | cmn4 | |
39 | 24 35 37 29 27 38 | syl122anc | |
40 | 16 33 39 | 3eqtrd | |