Metamath Proof Explorer


Theorem ip2di

Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ipdir.g +˙=+W
ipdir.p ˙=+F
ip2di.1 φWPreHil
ip2di.2 φAV
ip2di.3 φBV
ip2di.4 φCV
ip2di.5 φDV
Assertion ip2di φA+˙B,˙C+˙D=A,˙C˙B,˙D˙A,˙D˙B,˙C

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ipdir.g +˙=+W
5 ipdir.p ˙=+F
6 ip2di.1 φWPreHil
7 ip2di.2 φAV
8 ip2di.3 φBV
9 ip2di.4 φCV
10 ip2di.5 φDV
11 phllmod WPreHilWLMod
12 6 11 syl φWLMod
13 3 4 lmodvacl WLModCVDVC+˙DV
14 12 9 10 13 syl3anc φC+˙DV
15 1 2 3 4 5 ipdir WPreHilAVBVC+˙DVA+˙B,˙C+˙D=A,˙C+˙D˙B,˙C+˙D
16 6 7 8 14 15 syl13anc φA+˙B,˙C+˙D=A,˙C+˙D˙B,˙C+˙D
17 1 2 3 4 5 ipdi WPreHilAVCVDVA,˙C+˙D=A,˙C˙A,˙D
18 6 7 9 10 17 syl13anc φA,˙C+˙D=A,˙C˙A,˙D
19 1 2 3 4 5 ipdi WPreHilBVCVDVB,˙C+˙D=B,˙C˙B,˙D
20 6 8 9 10 19 syl13anc φB,˙C+˙D=B,˙C˙B,˙D
21 1 phlsrng WPreHilF*-Ring
22 srngring F*-RingFRing
23 ringcmn FRingFCMnd
24 6 21 22 23 4syl φFCMnd
25 eqid BaseF=BaseF
26 1 2 3 25 ipcl WPreHilBVCVB,˙CBaseF
27 6 8 9 26 syl3anc φB,˙CBaseF
28 1 2 3 25 ipcl WPreHilBVDVB,˙DBaseF
29 6 8 10 28 syl3anc φB,˙DBaseF
30 25 5 cmncom FCMndB,˙CBaseFB,˙DBaseFB,˙C˙B,˙D=B,˙D˙B,˙C
31 24 27 29 30 syl3anc φB,˙C˙B,˙D=B,˙D˙B,˙C
32 20 31 eqtrd φB,˙C+˙D=B,˙D˙B,˙C
33 18 32 oveq12d φA,˙C+˙D˙B,˙C+˙D=A,˙C˙A,˙D˙B,˙D˙B,˙C
34 1 2 3 25 ipcl WPreHilAVCVA,˙CBaseF
35 6 7 9 34 syl3anc φA,˙CBaseF
36 1 2 3 25 ipcl WPreHilAVDVA,˙DBaseF
37 6 7 10 36 syl3anc φA,˙DBaseF
38 25 5 cmn4 FCMndA,˙CBaseFA,˙DBaseFB,˙DBaseFB,˙CBaseFA,˙C˙A,˙D˙B,˙D˙B,˙C=A,˙C˙B,˙D˙A,˙D˙B,˙C
39 24 35 37 29 27 38 syl122anc φA,˙C˙A,˙D˙B,˙D˙B,˙C=A,˙C˙B,˙D˙A,˙D˙B,˙C
40 16 33 39 3eqtrd φA+˙B,˙C+˙D=A,˙C˙B,˙D˙A,˙D˙B,˙C