Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ipopos.i | |
|
Assertion | ipopos | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipopos.i | |
|
2 | 1 | fvexi | |
3 | 2 | a1i | |
4 | 1 | ipobas | |
5 | eqidd | |
|
6 | ssid | |
|
7 | eqid | |
|
8 | 1 7 | ipole | |
9 | 8 | 3anidm23 | |
10 | 6 9 | mpbiri | |
11 | 1 7 | ipole | |
12 | 1 7 | ipole | |
13 | 12 | 3com23 | |
14 | 11 13 | anbi12d | |
15 | simpl | |
|
16 | simpr | |
|
17 | 15 16 | eqssd | |
18 | 14 17 | syl6bi | |
19 | sstr | |
|
20 | 19 | a1i | |
21 | 11 | 3adant3r3 | |
22 | 1 7 | ipole | |
23 | 22 | 3adant3r1 | |
24 | 21 23 | anbi12d | |
25 | 1 7 | ipole | |
26 | 25 | 3adant3r2 | |
27 | 20 24 26 | 3imtr4d | |
28 | 3 4 5 10 18 27 | isposd | |
29 | fvprc | |
|
30 | 1 29 | eqtrid | |
31 | 0pos | |
|
32 | 30 31 | eqeltrdi | |
33 | 28 32 | pm2.61i | |