Metamath Proof Explorer


Theorem ipopos

Description: The inclusion poset on a family of sets is actually a poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypothesis ipopos.i I=toIncF
Assertion ipopos IPoset

Proof

Step Hyp Ref Expression
1 ipopos.i I=toIncF
2 1 fvexi IV
3 2 a1i FVIV
4 1 ipobas FVF=BaseI
5 eqidd FVI=I
6 ssid aa
7 eqid I=I
8 1 7 ipole FVaFaFaIaaa
9 8 3anidm23 FVaFaIaaa
10 6 9 mpbiri FVaFaIa
11 1 7 ipole FVaFbFaIbab
12 1 7 ipole FVbFaFbIaba
13 12 3com23 FVaFbFbIaba
14 11 13 anbi12d FVaFbFaIbbIaabba
15 simpl abbaab
16 simpr abbaba
17 15 16 eqssd abbaa=b
18 14 17 syl6bi FVaFbFaIbbIaa=b
19 sstr abbcac
20 19 a1i FVaFbFcFabbcac
21 11 3adant3r3 FVaFbFcFaIbab
22 1 7 ipole FVbFcFbIcbc
23 22 3adant3r1 FVaFbFcFbIcbc
24 21 23 anbi12d FVaFbFcFaIbbIcabbc
25 1 7 ipole FVaFcFaIcac
26 25 3adant3r2 FVaFbFcFaIcac
27 20 24 26 3imtr4d FVaFbFcFaIbbIcaIc
28 3 4 5 10 18 27 isposd FVIPoset
29 fvprc ¬FVtoIncF=
30 1 29 eqtrid ¬FVI=
31 0pos Poset
32 30 31 eqeltrdi ¬FVIPoset
33 28 32 pm2.61i IPoset