Metamath Proof Explorer


Theorem isassad

Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by SN, 2-Mar-2025)

Ref Expression
Hypotheses isassad.v φV=BaseW
isassad.f φF=ScalarW
isassad.b φB=BaseF
isassad.s φ·˙=W
isassad.t φ×˙=W
isassad.1 φWLMod
isassad.2 φWRing
isassad.4 φrBxVyVr·˙x×˙y=r·˙x×˙y
isassad.5 φrBxVyVx×˙r·˙y=r·˙x×˙y
Assertion isassad φWAssAlg

Proof

Step Hyp Ref Expression
1 isassad.v φV=BaseW
2 isassad.f φF=ScalarW
3 isassad.b φB=BaseF
4 isassad.s φ·˙=W
5 isassad.t φ×˙=W
6 isassad.1 φWLMod
7 isassad.2 φWRing
8 isassad.4 φrBxVyVr·˙x×˙y=r·˙x×˙y
9 isassad.5 φrBxVyVx×˙r·˙y=r·˙x×˙y
10 6 7 jca φWLModWRing
11 8 9 jca φrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
12 11 ralrimivvva φrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
13 2 fveq2d φBaseF=BaseScalarW
14 3 13 eqtrd φB=BaseScalarW
15 4 oveqd φr·˙x=rWx
16 eqidd φy=y
17 5 15 16 oveq123d φr·˙x×˙y=rWxWy
18 eqidd φr=r
19 5 oveqd φx×˙y=xWy
20 4 18 19 oveq123d φr·˙x×˙y=rWxWy
21 17 20 eqeq12d φr·˙x×˙y=r·˙x×˙yrWxWy=rWxWy
22 eqidd φx=x
23 4 oveqd φr·˙y=rWy
24 5 22 23 oveq123d φx×˙r·˙y=xWrWy
25 24 20 eqeq12d φx×˙r·˙y=r·˙x×˙yxWrWy=rWxWy
26 21 25 anbi12d φr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙yrWxWy=rWxWyxWrWy=rWxWy
27 1 26 raleqbidv φyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙yyBaseWrWxWy=rWxWyxWrWy=rWxWy
28 1 27 raleqbidv φxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙yxBaseWyBaseWrWxWy=rWxWyxWrWy=rWxWy
29 14 28 raleqbidv φrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙yrBaseScalarWxBaseWyBaseWrWxWy=rWxWyxWrWy=rWxWy
30 12 29 mpbid φrBaseScalarWxBaseWyBaseWrWxWy=rWxWyxWrWy=rWxWy
31 eqid BaseW=BaseW
32 eqid ScalarW=ScalarW
33 eqid BaseScalarW=BaseScalarW
34 eqid W=W
35 eqid W=W
36 31 32 33 34 35 isassa WAssAlgWLModWRingrBaseScalarWxBaseWyBaseWrWxWy=rWxWyxWrWy=rWxWy
37 10 30 36 sylanbrc φWAssAlg