Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by SN, 2-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isassad.v | |
|
isassad.f | |
||
isassad.b | |
||
isassad.s | |
||
isassad.t | |
||
isassad.1 | |
||
isassad.2 | |
||
isassad.4 | |
||
isassad.5 | |
||
Assertion | isassad | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isassad.v | |
|
2 | isassad.f | |
|
3 | isassad.b | |
|
4 | isassad.s | |
|
5 | isassad.t | |
|
6 | isassad.1 | |
|
7 | isassad.2 | |
|
8 | isassad.4 | |
|
9 | isassad.5 | |
|
10 | 6 7 | jca | |
11 | 8 9 | jca | |
12 | 11 | ralrimivvva | |
13 | 2 | fveq2d | |
14 | 3 13 | eqtrd | |
15 | 4 | oveqd | |
16 | eqidd | |
|
17 | 5 15 16 | oveq123d | |
18 | eqidd | |
|
19 | 5 | oveqd | |
20 | 4 18 19 | oveq123d | |
21 | 17 20 | eqeq12d | |
22 | eqidd | |
|
23 | 4 | oveqd | |
24 | 5 22 23 | oveq123d | |
25 | 24 20 | eqeq12d | |
26 | 21 25 | anbi12d | |
27 | 1 26 | raleqbidv | |
28 | 1 27 | raleqbidv | |
29 | 14 28 | raleqbidv | |
30 | 12 29 | mpbid | |
31 | eqid | |
|
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | eqid | |
|
36 | 31 32 33 34 35 | isassa | |
37 | 10 30 36 | sylanbrc | |