Metamath Proof Explorer


Theorem iscard5

Description: Two ways to express the property of being a cardinal number. (Contributed by RP, 8-Nov-2023)

Ref Expression
Assertion iscard5 card A = A A On x A ¬ x A

Proof

Step Hyp Ref Expression
1 iscard card A = A A On x A x A
2 sdomnen x A ¬ x A
3 onelss A On x A x A
4 ssdomg A On x A x A
5 3 4 syld A On x A x A
6 5 imp A On x A x A
7 brsdom x A x A ¬ x A
8 7 biimpri x A ¬ x A x A
9 8 a1i A On x A x A ¬ x A x A
10 6 9 mpand A On x A ¬ x A x A
11 2 10 impbid2 A On x A x A ¬ x A
12 11 ralbidva A On x A x A x A ¬ x A
13 12 pm5.32i A On x A x A A On x A ¬ x A
14 1 13 bitri card A = A A On x A ¬ x A