Description: The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isclatd.b | |
|
isclatd.u | |
||
isclatd.g | |
||
isclatd.k | |
||
isclatd.1 | |
||
isclatd.2 | |
||
Assertion | isclatd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclatd.b | |
|
2 | isclatd.u | |
|
3 | isclatd.g | |
|
4 | isclatd.k | |
|
5 | isclatd.1 | |
|
6 | isclatd.2 | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | biid | |
|
11 | 7 8 9 10 4 | lubdm | |
12 | ssrab2 | |
|
13 | 11 12 | eqsstrdi | |
14 | elpwi | |
|
15 | 14 5 | sylan2 | |
16 | 15 | ralrimiva | |
17 | dfss3 | |
|
18 | 16 17 | sylibr | |
19 | 1 | pweqd | |
20 | 2 | dmeqd | |
21 | 18 19 20 | 3sstr3d | |
22 | 13 21 | eqssd | |
23 | eqid | |
|
24 | biid | |
|
25 | 7 8 23 24 4 | glbdm | |
26 | ssrab2 | |
|
27 | 25 26 | eqsstrdi | |
28 | 14 6 | sylan2 | |
29 | 28 | ralrimiva | |
30 | dfss3 | |
|
31 | 29 30 | sylibr | |
32 | 3 | dmeqd | |
33 | 31 19 32 | 3sstr3d | |
34 | 27 33 | eqssd | |
35 | 7 9 23 | isclat | |
36 | 35 | biimpri | |
37 | 4 22 34 36 | syl12anc | |