Metamath Proof Explorer


Theorem isclm

Description: A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses isclm.f F=ScalarW
isclm.k K=BaseF
Assertion isclm WCModWLModF=fld𝑠KKSubRingfld

Proof

Step Hyp Ref Expression
1 isclm.f F=ScalarW
2 isclm.k K=BaseF
3 fvexd w=WScalarwV
4 fvexd w=Wf=ScalarwBasefV
5 id f=Scalarwf=Scalarw
6 fveq2 w=WScalarw=ScalarW
7 6 1 eqtr4di w=WScalarw=F
8 5 7 sylan9eqr w=Wf=Scalarwf=F
9 8 adantr w=Wf=Scalarwk=Baseff=F
10 id k=Basefk=Basef
11 8 fveq2d w=Wf=ScalarwBasef=BaseF
12 11 2 eqtr4di w=Wf=ScalarwBasef=K
13 10 12 sylan9eqr w=Wf=Scalarwk=Basefk=K
14 13 oveq2d w=Wf=Scalarwk=Baseffld𝑠k=fld𝑠K
15 9 14 eqeq12d w=Wf=Scalarwk=Baseff=fld𝑠kF=fld𝑠K
16 13 eleq1d w=Wf=Scalarwk=BasefkSubRingfldKSubRingfld
17 15 16 anbi12d w=Wf=Scalarwk=Baseff=fld𝑠kkSubRingfldF=fld𝑠KKSubRingfld
18 4 17 sbcied w=Wf=Scalarw[˙Basef/k]˙f=fld𝑠kkSubRingfldF=fld𝑠KKSubRingfld
19 3 18 sbcied w=W[˙Scalarw/f]˙[˙Basef/k]˙f=fld𝑠kkSubRingfldF=fld𝑠KKSubRingfld
20 df-clm CMod=wLMod|[˙Scalarw/f]˙[˙Basef/k]˙f=fld𝑠kkSubRingfld
21 19 20 elrab2 WCModWLModF=fld𝑠KKSubRingfld
22 3anass WLModF=fld𝑠KKSubRingfldWLModF=fld𝑠KKSubRingfld
23 21 22 bitr4i WCModWLModF=fld𝑠KKSubRingfld