Description: A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isclm.f | |
|
isclm.k | |
||
Assertion | isclm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclm.f | |
|
2 | isclm.k | |
|
3 | fvexd | |
|
4 | fvexd | |
|
5 | id | |
|
6 | fveq2 | |
|
7 | 6 1 | eqtr4di | |
8 | 5 7 | sylan9eqr | |
9 | 8 | adantr | |
10 | id | |
|
11 | 8 | fveq2d | |
12 | 11 2 | eqtr4di | |
13 | 10 12 | sylan9eqr | |
14 | 13 | oveq2d | |
15 | 9 14 | eqeq12d | |
16 | 13 | eleq1d | |
17 | 15 16 | anbi12d | |
18 | 4 17 | sbcied | |
19 | 3 18 | sbcied | |
20 | df-clm | |
|
21 | 19 20 | elrab2 | |
22 | 3anass | |
|
23 | 21 22 | bitr4i | |