Metamath Proof Explorer


Theorem isfi

Description: Express " A is finite". Definition 10.29 of TakeutiZaring p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008)

Ref Expression
Assertion isfi AFinxωAx

Proof

Step Hyp Ref Expression
1 df-fin Fin=y|xωyx
2 1 eleq2i AFinAy|xωyx
3 relen Rel
4 3 brrelex1i AxAV
5 4 rexlimivw xωAxAV
6 breq1 y=AyxAx
7 6 rexbidv y=AxωyxxωAx
8 5 7 elab3 Ay|xωyxxωAx
9 2 8 bitri AFinxωAx