Description: Fin2 expressed in terms of minimal elements. (Contributed by Stefan O'Rear, 2-Nov-2014) (Proof shortened by Mario Carneiro, 16-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isfin2-2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi | |
|
2 | fin2i2 | |
|
3 | 2 | ex | |
4 | 1 3 | sylan2 | |
5 | 4 | ralrimiva | |
6 | elpwi | |
|
7 | simp1r | |
|
8 | simp1l | |
|
9 | simp3l | |
|
10 | fin23lem7 | |
|
11 | 8 7 9 10 | syl3anc | |
12 | sorpsscmpl | |
|
13 | 12 | adantl | |
14 | 13 | 3ad2ant3 | |
15 | neeq1 | |
|
16 | soeq2 | |
|
17 | 15 16 | anbi12d | |
18 | inteq | |
|
19 | id | |
|
20 | 18 19 | eleq12d | |
21 | 17 20 | imbi12d | |
22 | simp2 | |
|
23 | ssrab2 | |
|
24 | pwexg | |
|
25 | elpw2g | |
|
26 | 8 24 25 | 3syl | |
27 | 23 26 | mpbiri | |
28 | 21 22 27 | rspcdva | |
29 | 11 14 28 | mp2and | |
30 | sorpssint | |
|
31 | 14 30 | syl | |
32 | 29 31 | mpbird | |
33 | psseq1 | |
|
34 | psseq1 | |
|
35 | pssdifcom1 | |
|
36 | 33 34 35 | fin23lem11 | |
37 | 7 32 36 | sylc | |
38 | simp3r | |
|
39 | sorpssuni | |
|
40 | 38 39 | syl | |
41 | 37 40 | mpbid | |
42 | 41 | 3exp | |
43 | 6 42 | sylan2 | |
44 | 43 | ralrimdva | |
45 | isfin2 | |
|
46 | 44 45 | sylibrd | |
47 | 5 46 | impbid2 | |