Metamath Proof Explorer


Theorem isfin2-2

Description: Fin2 expressed in terms of minimal elements. (Contributed by Stefan O'Rear, 2-Nov-2014) (Proof shortened by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion isfin2-2 AVAFinIIy𝒫𝒫Ay[⊂]Oryyy

Proof

Step Hyp Ref Expression
1 elpwi y𝒫𝒫Ay𝒫A
2 fin2i2 AFinIIy𝒫Ay[⊂]Oryyy
3 2 ex AFinIIy𝒫Ay[⊂]Oryyy
4 1 3 sylan2 AFinIIy𝒫𝒫Ay[⊂]Oryyy
5 4 ralrimiva AFinIIy𝒫𝒫Ay[⊂]Oryyy
6 elpwi b𝒫𝒫Ab𝒫A
7 simp1r AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbb𝒫A
8 simp1l AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]OrbAV
9 simp3l AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbb
10 fin23lem7 AVb𝒫Abc𝒫A|Acb
11 8 7 9 10 syl3anc AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbc𝒫A|Acb
12 sorpsscmpl [⊂]Orb[⊂]Orc𝒫A|Acb
13 12 adantl b[⊂]Orb[⊂]Orc𝒫A|Acb
14 13 3ad2ant3 AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orb[⊂]Orc𝒫A|Acb
15 neeq1 y=c𝒫A|Acbyc𝒫A|Acb
16 soeq2 y=c𝒫A|Acb[⊂]Ory[⊂]Orc𝒫A|Acb
17 15 16 anbi12d y=c𝒫A|Acby[⊂]Oryc𝒫A|Acb[⊂]Orc𝒫A|Acb
18 inteq y=c𝒫A|Acby=c𝒫A|Acb
19 id y=c𝒫A|Acby=c𝒫A|Acb
20 18 19 eleq12d y=c𝒫A|Acbyyc𝒫A|Acbc𝒫A|Acb
21 17 20 imbi12d y=c𝒫A|Acby[⊂]Oryyyc𝒫A|Acb[⊂]Orc𝒫A|Acbc𝒫A|Acbc𝒫A|Acb
22 simp2 AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orby𝒫𝒫Ay[⊂]Oryyy
23 ssrab2 c𝒫A|Acb𝒫A
24 pwexg AV𝒫AV
25 elpw2g 𝒫AVc𝒫A|Acb𝒫𝒫Ac𝒫A|Acb𝒫A
26 8 24 25 3syl AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbc𝒫A|Acb𝒫𝒫Ac𝒫A|Acb𝒫A
27 23 26 mpbiri AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbc𝒫A|Acb𝒫𝒫A
28 21 22 27 rspcdva AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbc𝒫A|Acb[⊂]Orc𝒫A|Acbc𝒫A|Acbc𝒫A|Acb
29 11 14 28 mp2and AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbc𝒫A|Acbc𝒫A|Acb
30 sorpssint [⊂]Orc𝒫A|Acbzc𝒫A|Acbwc𝒫A|Acb¬wzc𝒫A|Acbc𝒫A|Acb
31 14 30 syl AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbzc𝒫A|Acbwc𝒫A|Acb¬wzc𝒫A|Acbc𝒫A|Acb
32 29 31 mpbird AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbzc𝒫A|Acbwc𝒫A|Acb¬wz
33 psseq1 m=AzmnAzn
34 psseq1 w=AnwzAnz
35 pssdifcom1 zAnAAznAnz
36 33 34 35 fin23lem11 b𝒫Azc𝒫A|Acbwc𝒫A|Acb¬wzmbnb¬mn
37 7 32 36 sylc AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbmbnb¬mn
38 simp3r AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orb[⊂]Orb
39 sorpssuni [⊂]Orbmbnb¬mnbb
40 38 39 syl AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbmbnb¬mnbb
41 37 40 mpbid AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbbb
42 41 3exp AVb𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbbb
43 6 42 sylan2 AVb𝒫𝒫Ay𝒫𝒫Ay[⊂]Oryyyb[⊂]Orbbb
44 43 ralrimdva AVy𝒫𝒫Ay[⊂]Oryyyb𝒫𝒫Ab[⊂]Orbbb
45 isfin2 AVAFinIIb𝒫𝒫Ab[⊂]Orbbb
46 44 45 sylibrd AVy𝒫𝒫Ay[⊂]OryyyAFinII
47 5 46 impbid2 AVAFinIIy𝒫𝒫Ay[⊂]Oryyy