Step |
Hyp |
Ref |
Expression |
1 |
|
isfne.1 |
|
2 |
|
isfne.2 |
|
3 |
|
fnerel |
|
4 |
3
|
brrelex1i |
|
5 |
4
|
anim1i |
|
6 |
5
|
ancoms |
|
7 |
|
simpr |
|
8 |
7 1 2
|
3eqtr3g |
|
9 |
|
simpr |
|
10 |
|
uniexg |
|
11 |
10
|
adantr |
|
12 |
9 11
|
eqeltrd |
|
13 |
|
uniexb |
|
14 |
12 13
|
sylibr |
|
15 |
|
simpl |
|
16 |
14 15
|
jca |
|
17 |
8 16
|
syldan |
|
18 |
17
|
adantrr |
|
19 |
|
unieq |
|
20 |
19 1
|
eqtr4di |
|
21 |
20
|
eqeq1d |
|
22 |
|
raleq |
|
23 |
21 22
|
anbi12d |
|
24 |
|
unieq |
|
25 |
24 2
|
eqtr4di |
|
26 |
25
|
eqeq2d |
|
27 |
|
ineq1 |
|
28 |
27
|
unieqd |
|
29 |
28
|
sseq2d |
|
30 |
29
|
ralbidv |
|
31 |
26 30
|
anbi12d |
|
32 |
|
df-fne |
|
33 |
23 31 32
|
brabg |
|
34 |
6 18 33
|
pm5.21nd |
|