Metamath Proof Explorer


Theorem isgim

Description: An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypotheses isgim.b B=BaseR
isgim.c C=BaseS
Assertion isgim FRGrpIsoSFRGrpHomSF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 isgim.b B=BaseR
2 isgim.c C=BaseS
3 df-3an RGrpSGrpFcRGrpHomS|c:B1-1 ontoCRGrpSGrpFcRGrpHomS|c:B1-1 ontoC
4 df-gim GrpIso=aGrp,bGrpcaGrpHomb|c:Basea1-1 ontoBaseb
5 ovex aGrpHombV
6 5 rabex caGrpHomb|c:Basea1-1 ontoBasebV
7 oveq12 a=Rb=SaGrpHomb=RGrpHomS
8 fveq2 a=RBasea=BaseR
9 8 1 eqtr4di a=RBasea=B
10 fveq2 b=SBaseb=BaseS
11 10 2 eqtr4di b=SBaseb=C
12 f1oeq23 Basea=BBaseb=Cc:Basea1-1 ontoBasebc:B1-1 ontoC
13 9 11 12 syl2an a=Rb=Sc:Basea1-1 ontoBasebc:B1-1 ontoC
14 7 13 rabeqbidv a=Rb=ScaGrpHomb|c:Basea1-1 ontoBaseb=cRGrpHomS|c:B1-1 ontoC
15 4 6 14 elovmpo FRGrpIsoSRGrpSGrpFcRGrpHomS|c:B1-1 ontoC
16 ghmgrp1 FRGrpHomSRGrp
17 ghmgrp2 FRGrpHomSSGrp
18 16 17 jca FRGrpHomSRGrpSGrp
19 18 adantr FRGrpHomSF:B1-1 ontoCRGrpSGrp
20 19 pm4.71ri FRGrpHomSF:B1-1 ontoCRGrpSGrpFRGrpHomSF:B1-1 ontoC
21 f1oeq1 c=Fc:B1-1 ontoCF:B1-1 ontoC
22 21 elrab FcRGrpHomS|c:B1-1 ontoCFRGrpHomSF:B1-1 ontoC
23 22 anbi2i RGrpSGrpFcRGrpHomS|c:B1-1 ontoCRGrpSGrpFRGrpHomSF:B1-1 ontoC
24 20 23 bitr4i FRGrpHomSF:B1-1 ontoCRGrpSGrpFcRGrpHomS|c:B1-1 ontoC
25 3 15 24 3bitr4i FRGrpIsoSFRGrpHomSF:B1-1 ontoC