Description: An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isgim.b | |
|
isgim.c | |
||
Assertion | isgim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgim.b | |
|
2 | isgim.c | |
|
3 | df-3an | |
|
4 | df-gim | |
|
5 | ovex | |
|
6 | 5 | rabex | |
7 | oveq12 | |
|
8 | fveq2 | |
|
9 | 8 1 | eqtr4di | |
10 | fveq2 | |
|
11 | 10 2 | eqtr4di | |
12 | f1oeq23 | |
|
13 | 9 11 12 | syl2an | |
14 | 7 13 | rabeqbidv | |
15 | 4 6 14 | elovmpo | |
16 | ghmgrp1 | |
|
17 | ghmgrp2 | |
|
18 | 16 17 | jca | |
19 | 18 | adantr | |
20 | 19 | pm4.71ri | |
21 | f1oeq1 | |
|
22 | 21 | elrab | |
23 | 22 | anbi2i | |
24 | 20 23 | bitr4i | |
25 | 3 15 24 | 3bitr4i | |