Metamath Proof Explorer


Theorem islinds

Description: Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis islinds.b B=BaseW
Assertion islinds WVXLIndSWXBIXLIndFW

Proof

Step Hyp Ref Expression
1 islinds.b B=BaseW
2 elex WVWV
3 fveq2 w=WBasew=BaseW
4 3 pweqd w=W𝒫Basew=𝒫BaseW
5 breq2 w=WIsLIndFwIsLIndFW
6 4 5 rabeqbidv w=Ws𝒫Basew|IsLIndFw=s𝒫BaseW|IsLIndFW
7 df-linds LIndS=wVs𝒫Basew|IsLIndFw
8 fvex BaseWV
9 8 pwex 𝒫BaseWV
10 9 rabex s𝒫BaseW|IsLIndFWV
11 6 7 10 fvmpt WVLIndSW=s𝒫BaseW|IsLIndFW
12 2 11 syl WVLIndSW=s𝒫BaseW|IsLIndFW
13 12 eleq2d WVXLIndSWXs𝒫BaseW|IsLIndFW
14 reseq2 s=XIs=IX
15 14 breq1d s=XIsLIndFWIXLIndFW
16 15 elrab Xs𝒫BaseW|IsLIndFWX𝒫BaseWIXLIndFW
17 13 16 bitrdi WVXLIndSWX𝒫BaseWIXLIndFW
18 8 elpw2 X𝒫BaseWXBaseW
19 1 sseq2i XBXBaseW
20 18 19 bitr4i X𝒫BaseWXB
21 20 anbi1i X𝒫BaseWIXLIndFWXBIXLIndFW
22 17 21 bitrdi WVXLIndSWXBIXLIndFW